Измерения основаны на сравнении одинаковых свойств материаль­ных объектов. Для свойств, при количественном сравнении которых при­меняются физические методы, в метрологии установлено единое обоб­щенное понятие - физическая величина. Физическая величина- свойство, общее в качественном отношении многим физическим объектам, но в количественном отношении индивидуальное для каждого объекта, напри­мер, длина, масса, электропроводность и теплоемкость тел, давление газа в сосуде и т. п. Но запах не является физической величиной, так как он устанавливается с помощью субъективных ощущений.

Мерой для количественного сравнения одинаковых свойств объек­тов служит единица физической величины - физическая величина, которой по соглашению присвоено числовое значение, равное 1. Единицам физи­ческих величин присваивается полное и сокращенное символьное обозна­чение - размерность. Например, масса - килограмм (кг), время - се­кунда (с), длина - метр (м), сила - Ньютон (Н).

Значение физической величины - оценка физической величины в виде некоторого числа принятых для нее единиц - характеризует количествен­ную индивидуальность объектов. Например, диаметр отверстия - 0,5 мм, радиус земного шара - 6378 км, скорость бегуна - 8 м/с, скорость све­та - 3 10 5 м/с.

Измерением называется нахождение значения физической величины с помощью специальных технических средств. Например, измерение ди­аметра вала штангенциркулем или микрометром, температуры жидкости - термометром, давления газа - манометром или вакуумметром. Значение физической величины х^, полученное при измерении, определяют по формуле х^ = аи, где а- числовое значение (размер) физической величины; и - единица физической величины.

Так как значения физических величин находят опытным путем, они содержат погрешность измерений. В связи с этим различают истинное и действительное значения физических величин. Истинное значение - зна­чение физической величины, которое идеальным образом отражает в качественном и количественном отношениях соответствующее свойство объекта. Оно является пределом, к которому приближается значение физической величины с повышением точности измерений.

Действительное значение - значение физической величины, найден­ное экспериментальным путем и настолько приближающееся к истинно­му значению, что для определенной цели может быть использовано вме­сто него. Это значение изменяется в зависимости от требуемой точнос­ти измерений. При технических измерениях значение физической вели­чины, найденное с допустимой погрешностью, принимается за действи­тельное значение.

Погрешность измерения есть отклонение результата измерений от истинного значения измеряемой величины. Абсолютной погрешностью называют погрешность измерения, выраженную в единицах измеряемой величины: Ах = х^- х, где х- истинное значение измеряемой величи­ны. Относительная погрешность - отношение абсолютной погрешности измерения к истинному значению физической величины: 6=Ах/х. Отно­сительная погрешность может быть выражена также в процентах.

Поскольку истинное значение измерения остается неизвестным, на практике можно найти лишь приближенную оценку погрешности изме­рения. При этом вместо истинного значения принимают действительное значение физической величины, полученное при измерениях той же ве­личины с более высокой точностью. Например, погрешность измерения линейных размеров штангенциркулем составляет ±0,1 мм, а микромет­ром - ± 0,004 мм.

Точность измерений может быть выражена количественно как обрат­ная величина модуля относительной погрешности. Например, если по­грешность измерения ±0,01, то точность измерения равна 100.

Физика. Предмет и задачи.

2.Физические величины и их измерение. Система СИ.

3. Механика. Задачи механики.

.

5. Кинематика точки МТ. Способы описания движения МТ.

6. Перемещение. Путь.

7. Скорость. Ускорение.

8. Тангенциальное и нормальное ускорения.

9. Кинематика вращательного движения.

10. Закон инерции Галилея. Инерциальные системы отсчета.

11. Преобразования Галилея. Закон сложения скоростей Галилея. Инвариантность ускорения. Принцип относительности.

12.Сила. Масса.

13. Второй закон. Импульс. Принцип независимости действия сил.

14. Третий закон Ньютона.

15. Виды фундаментальных взаимодействий. Закон всемирного тяготения. Закон Кулона. Сила Лоренца. Силы Ван-дер-Ваальса. Силы в классической механике.

16. Система материальных точек (СМТ).

17. Импульс системы. Закон сохранения импульса в замкнутой системе.

18. Центр масс. Уравнение движения СМТ.

19. Уравнение движения тела переменной массы. Формула Циолковского.

20. Работа сил. Мощность.

21.Потенциальное поле сил. Потенциальная энергия.

22. Кинетическая энергия МТ в силовом поле.

23. Полная механическая энергия. Закон сохранения энергии в механике.

24. Момент импульса. Момент силы. Уравнение моментов.

25. Закон сохранения момента импульса.

26. Собственный момент импульса.

27. Момент инерции ТТ относительно оси. Теорема Гюгенса - Штейнера.

28. Уравнение движения ТТ, вращающегося вокруг неподвижной оси.

29. Кинетическая энергия ТТ, совершающего поступательное и вращательное движения.

30. Место колебательного движения в природе и технике.

31. Свободные гармонические колебания. Метод векторных диаграмм.

32. Гармонический осциллятор. Пружинный, физический и математический маятники.

33. Динамические и статистические закономерности в физике. Термодинамический и статистический методы.

34. Свойства жидкостей и газов. Массовые и поверхностные силы. Закон Паскаля.

35. Закон Архимеда. Плавание тел.

36. Тепловое движение. Макроскопические параметры. Модель идеального газа. Давление газа с точки зрения молекулярно-кинетической теории. Понятие о температуре.

37. Уравнение состояния.

38. Опытные газовые законы.

39. Основное уравнение МКТ.

40. Средняя кинетическая энергия поступательного движения молекул.

41. Число степеней свободы. Закон равномерного распределения энергии по степеням свободы.

42. Внутренняя энергия идеального газа.

43. Длина свободного пробега газа.

44. Идеальный газ в силовом поле. Барометрическая формула. Закон Больцмана.

45. Внутренняя энергия системы – функция состояния.

46. Работа и теплота как функции процесса.

47. Первое начало термодинамики.

48. Теплоемкость многоатомных газов. Уравнение Роберта-Майера.

49. Применение первого начала термодинамики к изопроцессам.

50 Скорость звука в газе.

51..Обратимые и необратимые процессы. Круговые процессы.

52. Тепловые машины.

53. Цикл Карно.

54. Второе начало термодинамики.

55. Понятие об энтропии.

56. Теоремы Карно.

57. Энтропия при обратимых и необратимых процессах. Закон возрастания энтропии.

58. Энтропия как мера беспорядка в статистической системе.

59. Третье начало термодинамики.

60.Термодинамические потоки.

61. Диффузия в газах.

62. Вязкость.

63. Теплопроводность.

64.Термодиффузия.

65. Поверхностное натяжение.

66.Смачивание и несмачивание.

67. Давление под искривленной поверхностью жидкости.

68. Капиллярные явления.


Физика. Предмет и задачи.

Физика - естественная наука. В её основе лежит экспериментальное исследование явлений природы, а её задача - формулировка законов, которыми объясняются эти явления. Физика сосредоточена на изучении фундаментальных и простейших явлений и на ответах на простые вопросы: из чего состоит материя, каким образом частицы материи взаимодействуют между собой, по каким правилам и законам осуществляется движение частиц и т. д.

Предмет её изучения составляет материя (в виде вещества и полей) и наиболее общие формы её движения, а также фундаментальные взаимодействия природы, управляющие движением материи.

Физика тесно связана с математикой: математика предоставляет аппарат, с помощью которого физические законы могут быть точно сформулированы. Физические теории почти всегда формулируются в виде математических уравнений, причём используются более сложные разделы математики, чем обычно в других науках. И наоборот, развитие многих областей математики стимулировалось потребностями физической науки.

Размерность физической величины определяется используемой системой физических величин, которая представляет собой совокупность физических величин, связанных между собой зависимостями, и в которой несколько величин выбраны в качестве основных. Единица физической величины - это такая физическая величина, которой по соглашению присвоено числовое значение, равное единице.Системой единиц физических величин называют совокупность основных и производных единиц, основанную на некоторой системе величин.В расположенных ниже таблицах приведены физические величины и их единицы, принятые в Международной системе единиц (СИ), основанной на Международной системе величин.


Физические величины и единицы их измерения. Система СИ.

Физическая величина

Единица измерения физической величины

Механика

Масса m килограмм кг
Плотность килограмм на кубический метр кг/м 3
Удельный объем v кубический метр на килограмм м 3 /кг
Массовый расход Q m килограмм в секунду кг/с
Объемный расход Q V кубический метр в секунду м 3 /с
Импульс P килограмм-метр в секунду кг м/с
Момент импульса L килограмм-метр в квадрате в секунду кг м 2 /с
Момент инерции J килограмм-метр в квадрате кг м 2
Сила, вес F, Q ньютон Н
Момент силы M ньютон-метр Н м
Импульс силы I ньютон-секунда Н с
Давление, механическое напряжение p, паскаль Па
Работа, энергия A, E, U джоуль Дж
Мощность N ватт Вт

Международная система единиц (СИ) - система единиц, основанная на Международной системе величин, вместе с наименованиями и обозначениями, а также набором приставок и их наименованиями и обозначениями вместе с правилами их применения, принятая Генеральной конференцией по мерам и весам (CGPM).

Международный словарь по метрологии
СИ была принята XI Генеральной конференцией по мерам и весам (ГКМВ) в 1960 году, некоторые последующие конференции внесли в СИ ряд изменений.
СИ определяет семь основных единиц физических величин и производные единицы (сокращённо - единицы СИ или единицы), а также набор приставок. СИ также устанавливает стандартные сокращённые обозначения единиц и правила записи производных единиц.
Основные единицы: килограмм, метр, секунда, ампер, кельвин, моль и кандела. В рамках СИ считается, что эти единицы имеют независимую размерность, то есть ни одна из основных единиц не может быть получена из других.
Производные единицы получаются из основных с помощью алгебраических действий, таких как умножение и деление. Некоторым из производных единиц в СИ присвоены собственные наименования, например, единице радиан.
Приставки можно использовать перед наименованиями единиц. Они означают, что единицу нужно умножить или разделить на определённое целое число, степень числа 10. Например, приставка «кило» означает умножение на 1000 (километр = 1000 метров). Приставки СИ называют также десятичными приставками.


Механика. Задачи механики.

Механика – раздел физики, в котором изучаются закономерности механического движения, а также причины, вызывающие или изменяющие движение.

Основной задачей механики является описание механического движения тел, то есть установление закона (уравнения) движения тела на основе характеристик, описывают (координаты, перемещение, длина пройденного пути, угол поворота, скорость, ускорение и т.п.).Иными словами, если с помощью составленного закона (уравнения) движения можно определить положение тела в любой момент времени, то основная задача механики считается решенной. В зависимости от выбранных физических величин и методов решения основной задачи механики ее разделяют на кинематику, динамику и статику.


4.Механическое движение. Пространство и время. Системы координат. Измерение времени. Система отсчета. Векторы.

Механическим движением называют изменение положения тел в пространстве относительно других тел с течением времени. Механическое движение делят на поступательное, вращательное и колебательное.

Поступательным называется такое движение, при котором любая прямая проведенная в теле, перемещается параллельно себе. Вращательным называется движение, при котором все точки тела описывают концентрические окружности относительно некоторой точки, называемой центром вращения. Колебательным называют движение, при котором тело совершает периодически повторяющиеся движения около среднего положения, то есть колеблется.

Для описания механического движения вводится понятие системы отсчета .виды систем отсчёта могут быть различными, например, неподвижная система отсчёта, подвижная система отсчёта, инерциальная система отсчёта, неинерциальная система отсчёта. Она включает в себя тело отсчета, систему координат и часы. Тело отсчета – это тело, к которому «привязывается» система координат. система координат , которая представляет из себя точку отсчёта (начало координат). Система координат имеет 1, 2 или 3 оси в зависимости от условий движения. Положение точки на линии (1 ось), плоскости (2 оси) или в пространстве (3 оси) определяют соответственно одной, двумя или тремя координатами. Для определения положения тела в пространстве в любой момент времени также необходимо задать начало отсчёта времени. Известны разные системы координат: декартова, полярная, криволинейная и т.д. На практике используют чаще всего декартову и полярную системы координат. Декартова система координат – это (например, в двухмерном случае) два взаимно перпендикулярных луча, выходящих из одной точки, называемой началом координат, с нанесенным на них масштабом (рис.2.1а). Полярная система координат – это в двухмерном случае радиус–вектор, выходящий из начала координат и угол θ, на который поворачивается радиус-вектор (рис.2.1б). Часы необходимы для измерения времени.

Линия, которую описывает материальная точка в пространстве, называют траекторией . Для двумерного движения на плоскости (х,у) это функция у(х). Расстояние, пройденное материальной точкой вдоль траектории, называют длиной пути (рис.2.2). Вектор , соединяющий начальное положение движущейся материальной точки r(t 1) с каким – либо ее последующим положением r(t 2) называют перемещением (рис.2.2):

.

Рис. 2.2. Длина пути (выделена жирной линией); – вектор перемещения.

Каждая из координат тела зависит от времени х=х(t), у=у(t), z=z(t). Эти функции изменения координат в зависимости от времени называют кинематическим законом движения, например, длях=х(t) (рис.2.3).

Рис.2.3. Пример кинематического закона движения х=х(t).

Вектор-направленный отрезок для которого указано его начало и конец.Пространство и время-понятия обозначающие основные формы существования материи. Пространство выражает порядок сосуществование отдельных объектов. Время определяет порядок смены явлений.

Этот урок не будет новым для новичков. Все мы слышали со школы такие вещи как сантиметр, метр, километр. А когда речь заходила о массе, обычно говорили грамм, килограмм, тонна.

Сантиметры, метры и километры; граммы, килограммы и тонны носят одно общее название — единицы измерения физических величин .

В данном уроке мы рассмотрим наиболее популярные единицы измерения, но не будем сильно углубляться в эту тему, поскольку единицы измерения уходят в область физики. Сегодня мы вынуждены изучить часть физики, поскольку нам это необходимо для дальнейшего изучения математики.

Содержание урока

Единицы измерения длины

Для измерения длины предназначены следующие единицы измерения:

  • миллиметры;
  • сантиметры;
  • дециметры;
  • метры;
  • километры.

миллиметр (мм). Миллиметры можно увидеть даже воочию, если взять линейку, которой мы пользовались в школе каждый день

Подряд идущие друг за другом маленькие линии это и есть миллиметры. Точнее, расстояние между этими линиями равно одному миллиметру (1 мм):

сантиметр (см). На линейке каждый сантиметр обозначен числом. К примеру наша линейка, которая была на первом рисунке, имела длину 15 сантиметров. Последний сантиметр на этой линейке выделен числом 15.

В одном сантиметре 10 миллиметров. Между одним сантиметром и десятью миллиметрами можно поставить знак равенства, поскольку они обозначают одну и ту же длину:

1 см = 10 мм

Вы можете сами убедиться в этом, если посчитаете количество миллиметров на предыдущем рисунке. Вы обнаружите, что количество миллиметров (расстояний между линиями) равно 10.

Следующая единица измерения длины это дециметр (дм). В одном дециметре десять сантиметров. Между одним дециметром и десятью сантиметрами можно поставить знак равенства, поскольку они обозначают одну и ту же длину:

1 дм = 10 см

Вы можете убедиться в этом, если посчитаете количество сантиметров на следующем рисунке:

Вы обнаружите, что количество сантиметров равно 10.

Следующая единица измерения это метр (м). В одном метре десять дециметров. Между одним метром и десятью дециметрами можно поставить знак равенства, поскольку они обозначают одну и ту же длину:

1 м = 10 дм

К сожалению, метр нельзя проиллюстрировать на рисунке, потому что он достаточно великоват. Если вы хотите увидеть метр в живую, возьмите рулетку. Она есть у каждого в доме. На рулетке один метр будет обозначен как 100 см. Это потому что в одном метре десять дециметров, а в десяти дециметрах сто сантиметров:

1 м = 10 дм = 100 см

100 получается путём перевода одного метра в сантиметры. Это отдельная тема, которую мы рассмотрим чуть позже. А пока перейдём к следующей единице измерения длины, которая называется километр.

Километр считается самой большой единицей измерения длины. Есть конечно и другие более старшие единицы, такие как мегаметр, гигаметр тераметр, но мы не будем их рассматривать, поскольку для дальнейшего изучения математики нам достаточно и километра.

В одном километре тысяча метров. Между одним километром и тысячью метрами можно поставить знак равенства, поскольку они обозначают одну и ту же длину:

1 км = 1000 м

В километрах измеряются расстояния между городами и странами. К примеру, расстояние от Москвы до Санкт-Петербурга около 714 километров.

Международная система единиц СИ

Международная система единиц СИ — это некоторый набор общепринятых физических величин.

Основное предназначение международной системы единиц СИ — достижение договоренностей между странами.

Мы знаем, что языки и традиции стран мира различны. С этим ничего не поделать. Но законы математики и физики одинаково работают везде. Если в одной стране «дважды два будет четыре», то и в другой стране «дважды два будет четыре».

Основная проблема заключалась в том, что для каждой физической величины существует несколько единиц измерения. К примеру, мы сейчас узнали, что для измерения длины существуют миллиметры, сантиметры, дециметры, метры и километры. Если несколько ученых, говорящих на разных языках, соберутся в одном месте для решения какой-нибудь задачи, то такое большое многообразие единиц измерения длины может породить между этими учеными противоречия.

Один ученый будет заявлять, что в их стране длина измеряется в метрах. Второй может сказать, что в их стране длина измеряется в километрах. Третий может предложить свою единицу измерения.

Поэтому была создана международная система единиц СИ. СИ это аббревиатура от французского словосочетания Le Système International d’Unités, SI (что в переводе на русский означает — международная система единиц СИ).

В СИ приведены наиболее популярные физические величины и для каждой из них определена своя общепринятая единица измерения. К примеру, во всех странах при решении задач условились, что длину будут измерять в метрах. Поэтому, при решении задач, если длина дана в другой единице измерения (например, в километрах), то её обязательно нужно перевести в метры. О том, как переводить одну единицу измерения в другую, мы поговорим немного позже. А пока нарисуем свою международную систему единиц СИ.

Наш рисунок будет представлять собой таблицу физических величин. Каждую изученную физическую величину мы будем включать в нашу таблицу и указывать ту единицу измерения, которая принята во всех странах. Сейчас мы изучили единицы измерения длины и узнали, что в системе СИ для измерения длины определены метры. Значит наша таблица будет выглядеть так:

Единицы измерения массы

Масса – это величина, обозначающая количество вещества в теле. В народе массу тела называют весом. Обычно, когда что-либо взвешивают, говорят «это весит столько-то килограмм» , хотя речь идёт не о весе, а о массе этого тела.

Вместе с тем, масса и вес это разные понятия. Вес — это сила с которой тело действует на горизонтальную опору. Вес измеряется в ньютонах. А масса это величина, показывающая количество вещества в этом теле.

Но ничего страшного нет в том, если вы назовёте массу тела весом. Даже в медицине говорят «вес человека» , хотя речь идёт о массе человека. Главное быть в курсе, что это разные понятия

Для измерения массы используются следующие единицы измерения:

  • миллиграммы;
  • граммы;
  • килограммы;
  • центнеры;
  • тонны.

Самая маленькая единица измерения это миллиграмм (мг). Миллиграмм скорее всего вы никогда не примените на практике. Их применяют химики и другие ученые, которые работают с мелкими веществами. Для вас достаточно знать, что такая единица измерения массы существует.

Следующая единица измерения это грамм (г). В граммах принято измерять количество того или иного продукта при составлении рецепта.

В одном грамме тысяча миллиграммов. Между одним граммом и тысячью миллиграммами можно поставить знак равенства, поскольку они обозначают одну и ту же массу:

1 г = 1000 мг

Следующая единица измерения это килограмм (кг). Килограмм это общепринятая единица измерения. В ней измеряется всё что угодно. Килограмм включен в систему СИ. Давайте и мы включим в нашу таблицу СИ ещё одну физическую величину. Она у нас будет называться «масса»:

В одном килограмме тысяча граммов. Между одним килограммом и тысячью граммами можно поставить знак равенства, поскольку они обозначают одну и ту же массу:

1 кг = 1000 г

Следующая единица измерения это центнер (ц). В центнерах удобно измерять массу урожая, собранного с небольшого участка или массу какого-нибудь груза.

В одном центнере сто килограммов. Между одним центнером и ста килограммами можно поставить знак равенства, поскольку они обозначают одну и ту же массу:

1 ц = 100 кг

Следующая единица измерения это тонна (т). В тоннах обычно измеряются большие грузы и массы больших тел. Например, масса космического корабля или автомобиля.

В одной тонне тысяча килограмм. Между одной тонной и тысячью килограммами можно поставить знак равенства, поскольку они обозначают одну и ту же массу:

1 т = 1000 кг

Единицы измерения времени

Что такое время думаем объяснять не нужно. Каждый знает что из себя представляет время и зачем оно нужно. Если мы откроем дискуссию на то, что такое время и попытаемся дать ему определение, то начнем углубляться в философию, а это нам сейчас не нужно. Лучше начнём с единиц измерения времени.

Для измерения времени предназначены следующие единицы измерения:

  • секунды;
  • минуты;
  • часы;
  • сутки.

Самая маленькая единица измерения это секунда (с). Есть конечно и более маленькие единицы такие как миллисекунды, микросекунды, наносекунды, но их мы рассматривать не будем, поскольку на данный момент в этом нет смысла.

В секундах измеряются различные показатели. Например, за сколько секунд спортсмен пробежит 100 метров. Секунда включена в международную систему единиц СИ для измерения времени и обозначается как «с». Давайте и мы включим в нашу таблицу СИ ещё одну физическую величину. Она у нас будет называться «время»:

минута (м). В одной минуте 60 секунд. Между одной минутой и шестьюдесятью секундами можно поставить знак равенства, поскольку они обозначают одно и то же время:

1 м = 60 с

Следующая единица измерения это час (ч). В одном часе 60 минут. Между одним часом и шестьюдесятью минутами можно поставить знак равенства, поскольку они обозначают одно и то же время:

1 ч = 60 м

К примеру, если мы изучали этот урок один час и нас спросят сколько времени мы потратили на его изучение, мы можем ответить двумя способами: «мы изучали урок один час» или так «мы изучали урок шестьдесят минут» . В обоих случаях, мы ответим правильно.

Следующая единица измерения времени это сутки . В сутках 24 часа. Между одними сутками и двадцатью четырьмя часами можно поставить знак равенства, поскольку они обозначают одно и то же время:

1 сут = 24 ч

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Физическая величина - свойство физических объектов, общее в качественном отношении многим объектам, но в количественном отношении индивидуальное для каждого из них. Качественная сторона понятия "физическая величина" определяет ее род (например, электрическое сопротивление как общее свойство проводников электричества), а количественная - ее "размер" (значение электрического сопротивления конкретного проводника, например R = 100 Ом). Числовое значение результата измерения зависит от выбора единицы физической величины.

Физическим величинам присвоены буквенные символы, используемые в физических уравнениях, выражающих связи между физическими величинами, существующие в физических объектах.

Размер физической величины - количественная определенность величины, присущая конкретному предмету, системе, явлению или процессу.

Значение физической величины - оценка размера физической величины в виде некоторого числа принятых для нее единиц измерения. Числовое значение физической величины - отвлеченное число, выражающее отношение значения физической величины к соответствующей единице данной физической величины (например, 220 В - значение амплитуды напряжения, причем само число 220 и есть числовое значение). Именно термин "значение" следует применять для выражения количественной стороны рассматриваемого свойства. Неправильно говорить и писать "величина тока", "величина напряжения" и т. д., поскольку ток и напряжение сами являются величинами (правильным будет применение терминов "значение силы тока", "значение напряжения").

При выбранной оценке физической величины ее характеризуют истинным, действительным и измеренным значениями.

Истинным значением физической величины называют значение физической величины, которое идеальным образом отражало бы в качественном и количественном отношениях соответствующее свойство объекта. Определить экспериментально его невозможно вследствие неизбежных погрешностей измерения.

Это понятие опирается на два основных постулата метрологии:

§ истинное значение определяемой величины существует и оно постоянно;

§ истинное значение измеряемой величины отыскать невозможно.

На практике оперируют понятием действительного значения, степень приближения которого к истинному значению зависит от точности средства измерения и погрешности самих измерений.

Действительным значением физической величины называют ее значение, найденное экспериментальным путем и настолько приближающееся к истинному значению, что для определенной цели может быть использовано вместо него.

Под измеренным значением понимают значение величины, отсчитанное по индикаторному устройству средства измерения.

Единица физической величины - величина фиксированного размера, которой условно присвоено стандартное числовое значение, равное единице..

Единицы физических величин делят на основные и производные и объединяют в системы единиц физических величин . Единица измерения устанавливается для каждой из физических величин с учетом того, что многие величины связаны между собой определенными зависимостями. Поэтому лишь часть физических величин и их единиц определяются независимо от других. Такие величины называют основными . Остальные физические величины - производные и их находят с использованием физических законов и зависимостей через основные. Совокупность основных и производных единиц физических величин, образованная в соответствии с принятыми принципами, называется системой единиц физических величин . Единица основной физической величины является основной единицей системы.

Международная система единиц (система СИ; SI - франц. Systeme International ) была принята XI Генеральной конференцией по мерам и весам в 1960 г.

В основу системы СИ положены семь основных и две дополнительные физические единицы. Основные единицы: метр, килограмм, секунда, ампер, кельвин, моль и кандела (табл. 1).

Таблица 1. Единицы Международной системы СИ

Наименование

Размерность

Наименование

Обозначение

международное

Основные

килограмм

Сила электрического тока

Температура

Количество вещества

Сила света

Дополнительные

Плоский угол

Телесный угол

стерадиан

Метр равен расстоянию, проходимому светом в вакууме за 1/299792458 долю секунды.

Килограмм - единица массы, определяемая как масса международного прототипа килограмма, представляющего цилиндр из сплава платины и иридия.

Секунда равна 9192631770 периодам излучения, соответствующего энергетическому переходу между двумя уровнями сверхтонкой структуры основного состояния атома цезия-133.

Ампер - сила неизменяющегося тока, который, проходя по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызывал бы силу взаимодействия, равную 210 -7 Н (ньютон) на каждом участке проводника длиной 1 м.

Кельвин - единица термодинамической температуры, равная 1/273,16 части термодинамической температуры тройной точки воды, т. е. температуры, при которой три фазы воды - парообразная, жидкая и твердая - находятся в динамическом равновесии.

Моль - количество вещества, содержащего столько структурных элементов, сколько содержится в углероде-12 массой 0,012 кг.

Кандела - сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 54010 12 Гц (длина волны около 0,555 мкм), чья энергетическая сила излучения в этом направлении составляет 1/683 Вт/ср (ср - стерадиан).

Дополнительные единицы системы СИ предназначены только для образования единиц угловой скорости и углового ускорения. К дополнительным физическим величинам системы СИ относят плоский и телесный углы.

Радиан (рад ) - угол между двумя радиусами окружности, длина дуги которой равна этому радиусу. В практических случаях часто используют такие единицы измерения угловых величин:

градус - 1 _ = 2р/360 рад = 1,745310 -2 рад;

минута - 1" = 1 _ /60 = 2,9088 10 -4 рад;

секунда - 1"= 1"/60= 1 _ /3600 = 4,848110 -6 рад;

радиан - 1 рад = 57 _ 17"45" = 57,2961 _ = (3,4378 10 3)" = (2,062710 5)".

Стерадиан (ср ) - телесный угол с вершиной в центре сферы, вырезающий на ее поверхности площадь, равную площади квадрата со стороной, равной радиусу сферы.

Измеряют телесные углы с помощью плоских углов и расчета

где б - телесный угол; ц - плоский угол при вершине конуса, образованного внутри сферы данным телесным углом.

Производные единицы системы СИ образуют из основных и дополнительных единиц.

В области измерений электрических и магнитных величин имеется одна основная единица - ампер (А). Через ампер и единицу мощности - ватт (Вт), единую для электрических, магнитных, механических и тепловых величин, можно определить все остальные электрические и магнитные единицы. Однако на сегодняшний день нет достаточно точных средств воспроизведения ватта абсолютными методами. Поэтому электрические и магнитные единицы основываются на единицах силы тока и производной от ампера единицы емкости - фарада.

К производным от ампера физическим величинам также относятся:

§ единица электродвижущей силы (ЭДС) и электрического напряжения - вольт (В);

§ единица частоты - герц (Гц);

§ единица электрического сопротивления - ом (Ом);

§ единица индуктивности и взаимной индуктивности двух катушек - генри (Гн).

В табл. 2 и 3 приведены производные единицы, наиболее употребляемые в телекоммуникационных системах и радиотехнике.

Таблица 2. Производные единицы СИ

Величина

Наименование

Размерность

Наименование

Обозначение

международное

Энергия, работа, количество теплоты

Сила, вес

Мощность, поток энергии

Количество электричества

Электрическое напряжение, электродвижущая сила (ЭДС), потенциал

Электрическая емкость

L -2 M -1 T 4 I 2

Электрическое сопротивление

Электрическая проводимость

L -2 M -1 T 3 I 2

Магнитная индукция

Поток магнитной индукции

Индуктивность, взаимная индуктивность

Таблица 3. Единицы СИ, применяемые в практике измерений

Величина

Наименование

Размерность

Единица измерения

Обозначение

международное

Плотность электрического тока

ампер на кв.метр

Напряженность электрического поля

вольт на метр

Абсолютная диэлектрическая проницаемость

L 3 M -1 T 4 I 2

фарад на метр

Удельное электрическое сопротивление

ом на метр

Полная мощность электрической цепи

вольт-ампер

Реактивная мощность электрической цепи

Напряженность магнитного поля

ампер на метр

Сокращенные обозначения единиц как международных, так и русских, названных в честь великих ученых, пишутся с заглавных букв, например ампер - А; ом - Ом; вольт - В; фарад - Ф. Для сравнения: метр - м, секунда - с, килограмм - кг.

На практике применение целых единиц не всегда удобно, так как в результате измерений получают очень большие или очень малые их значения. Поэтому в системе СИ установлены ее десятичные кратные и дольные единицы, которые образуются с помощью множителей. Кратные и дольные единицы величин пишутся слитно с наименованием основной или производной единицы: километр (км), милливольт (мВ); мегаом (МОм).

Кратная единица физической величины - единица, большая в целое число раз системной, например килогерц (10 3 Гц). Дольная единица физической величины - единица, меньшая в целое число раз системной, например микрогенри (10 -6 Гн).

Наименования кратных и дольных единиц системы СИ содержат ряд приставок, соответствующих множителям (табл. 4).

Таблица 4. Множители и приставки для образования десятичных кратных и дольных единиц СИ

Множитель

Приставка

Обозначение приставки

международное

В науке и технике используются единицы измерения физических величин, образующие определенные системы. В основу совокупности единиц, устанавливаемой стандартом для обязательного применения, положены единицы Международной системы (СИ). В теоретических разделах физики широко используются единицы систем СГС: СГСЭ, СГСМ и симметричной Гауссовой системы СГС. Определенное применение находят также единицы технической системы МКГСС и некоторые внесистемные единицы.

Международная система (СИ) построена на 6 основных единицах (метр, килограмм, секунда, кельвин, ампер, кандела) и 2 дополнительных (радиан, стерадиан). В окончательной редакции проекта стандарта “Единицы физических величин” приведены: единицы системы СИ; единицы, допускаемые к применению наравне с единицами СИ, например: тонна, минута, час, градус Цельсия, градус, минута, секунда, литр, киловатт–час, оборот в секунду, оборот в минуту; единицы системы СГС и другие единицы, применяемые в теоретических разделах физики и астрономии: световой год, парсек, барн, электронвольт; единицы, временно допускаемые к применению такие, как: ангстрем, килограмм–сила, килограмм–сила–метр, килограмм–сила на квадратный сантиметр, миллиметр ртутного столба, лошадиная сила, калория, килокалория, рентген, кюри. Важнейшие из этих единиц и соотношения между ними приведены в табл.П1.

Сокращенные обозначения единиц, приведенные в таблицах, применяются только после числового значения величины или в заголовках граф таблиц. Нельзя применять сокращенные обозначения вместо полных наименований единиц в тексте без числового значения величин. При использовании как русских, так и международных обозначений единиц используется прямой шрифт; обозначения (сокращенные) единиц, названия которых даны по именам ученых (ньютон, паскаль, ватт и т.д.) следует писать с заглавной буквы (Н, Па, Вт); в обозначениях единиц точку как знак сокращения не применяют. Обозначения единиц, входящих в произведение, разделяются точками как знаками умножения; в качестве знака деления применяют обычно косую черту; если в знаменатель входит произведение единиц, то оно заключается в скобки.



Для образования кратных и дольных единиц используются десятичные приставки (см. табл. П2). Особенно рекомендуется применение приставок, представляющих собой степень числа 10 с показателем, кратным трем. Целесообразно использовать дольные и кратные единицы, образованные от единиц СИ и приводящие к числовым значениям, лежащим между 0,1 и 1000 (например: 17 000 Па следует записать как 17 кПа).

Не допускается присоединять две или более приставок к одной единице (например: 10 –9 м следует записать как 1 нм). Для образования единиц массы приставку присоединяют к основному наименованию “грамм” (например: 10 –6 кг= =10 –3 г=1 мг). Если сложное наименование исходной единицы представляет собой произведение или дробь, то приставку присоединяют к наименованию первой единицы (например кН∙м). В необходимых случаях допускается в знаменателе применять дольные единицы длины, площади и объема (например В/см).

В табл.П3 приведены основные физические и астрономические постоянные.

Таблица П1

ЕДИНИЦЫ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН В СИСТЕМЕ СИ

И ИХ СООТНОШЕНИЕ С ДРУГИМИ ЕДИНИЦАМИ

Наименование величин Единицы измерения Сокращенное обозначение Размер Коэффициент для приведения к единицам СИ
СГС МКГСС и внесистемные единицы
Основные единицы
Длина метр м 1 см=10 –2 м 1 Å=10 –10 м 1 св.год=9,46×10 15 м
Масса килогамм кг 1г=10 –3 кг
Время секунда с 1 ч=3600 с 1 мин=60 с
Температура кельвин К 1 0 С=1 К
Сила тока ампер А 1 СГСЭ I = =1/3×10 –9 А 1 СГСМ I =10 А
Сила света кандела кд
Дополнительные единицы
Плоский угол радиан рад 1 0 =p/180 рад 1¢=p/108×10 –2 рад 1²=p/648×10 –3 рад
Телесный угол стерадиан ср Полный телесный угол=4p ср
Производные единицы
Частота герц Гц с –1

Продолжение табл.П1

Угловая скорость радиан в секунду рад/с с –1 1 об/с=2p рад/с 1об/мин= =0,105 рад/с
Объем кубический метр м 3 м 3 1см 2 =10 –6 м 3 1 л=10 –3 м 3
Скорость метр в секунду м/с м×с –1 1см/с=10 –2 м/с 1км/ч=0,278 м/с
Плотность килограмм на куби-ческий метр кг/м 3 кг×м –3 1г/см 3 = =10 3 кг/м 3
Сила ньютон Н кг×м×с –2 1 дин=10 –5 Н 1 кг=9,81Н
Работа, энергия, количество тепла джоуль Дж (Н×м) кг×м 2 ×с –2 1 эрг=10 –7 Дж 1 кгс×м=9,81 Дж 1 эВ=1,6×10 –19 Дж 1 кВт×ч=3,6×10 6 Дж 1 кал=4,19 Дж 1 ккал=4,19×10 3 Дж
Мощность ватт Вт (Дж/с) кг×м 2 ×с –3 1эрг/с=10 –7 Вт 1л.с.=735Вт
Давление паскаль Па (Н/м 2) кг∙м –1 ∙с –2 1дин/см 2 =0,1Па 1 ат=1 кгс/см 2 = =0,981∙10 5 Па 1мм.рт.ст.=133 Па 1атм= =760 мм.рт.ст.= =1,013∙10 5 Па
Момент силы ньютон–метр Н∙м кгм 2 ×с –2 1 дин×см= =10 –7 Н×м 1 кгс×м=9,81 Н×м
Момент инерции килограмм–метр в квадрате кг×м 2 кг×м 2 1 г×см 2 = =10 –7 кг×м 2
Динамическая вязкость паскаль–секунда Па×с кг×м –1 ×с –1 1П/пуаз/= =0,1Па×с

Продолжение табл.П1

Кинематическая вязкость квадратный метр на секунду м 2 /с м 2 ×с –1 1Ст/стокс/= =10 –4 м 2 /с
Теплоемкость системы джоуль на кельвин Дж/К кг×м 2 х х с –2 ×К –1 1 кал/ 0 С=4,19 Дж/К
Удельная теплоемкость джоуль на килограмм–кельвин Дж/ (кг×К) м 2 ×с –2 ×К –1 1 ккал/(кг× 0 С)= =4,19×10 3 Дж/(кг×К)
Электрический заряд кулон Кл А×с 1СГСЭ q = =1/3×10 –9 Кл 1СГСМ q = =10 Кл
Потенциал, электрическое напряжение вольт В (Вт/А) кг×м 2 х х с –3 ×А –1 1СГСЭ u = =300 В 1СГСМ u = =10 –8 В
Напряженность электрического поля вольт на метр В/м кг×м х х с –3 ×А –1 1 СГСЭ Е = =3×10 4 В/м
Электрическое смещение (электрическая индукция) кулон на квадратный метр Кл/м 2 м –2 ×с×А 1СГСЭ D = =1/12p х х 10 –5 Кл/м 2
Электрическое сопротивление ом Ом (В/А) кг×м 2 ×с –3 х х А –2 1СГСЭ R = 9×10 11 Ом 1СГСМ R = 10 –9 Ом
Электрическая емкость фарад Ф (Кл/В) кг –1 ×м –2 х с 4 ×А 2 1СГСЭ С = 1 см= =1/9×10 –11 Ф

Окончание табл.П1

Магнитный поток вебер Вб (В×с) кг×м 2 ×с –2 х х А –1 1СГСМ ф = =1 Мкс (максвел) = =10 –8 Вб
Магнитная индукция тесла Тл (Вб/ м 2) кг×с –2 ×А –1 1СГСМ В = =1 Гс(гаусс)= =10 –4 Тл
Напряженность магнитного поля ампер на метр А/м м –1 ×А 1СГСМ Н = =1Э(эрстед)= =1/4p×10 3 А/м
Магнитодвижущая сила ампер А А 1СГСМ Fm
Индуктивность генри Гн (Вб/А) кг×м 2 х х с –2 ×А –2 1СГСМ L = 1 см= =10 –9 Гн
Световой поток люмен лм кд
Яркость кандела на квадратный метр кд/м 2 м –2 ×кд
Освещенность люкс лк м –2 ×кд