Некоторые химические реактивы для выполнения аналитических работ приходится в лаборатории подвергать очистке. Очистка производится фильтрованием, перегонкой, перекристаллизацией, экстракцией, методами хроматографии и ионофореза.

Фильтрование

Фильтрование проводят для отделения твердых частиц от жидкости, например нерастворимых примесей от раствора реактива. Фильтрование основано на пропускании смеси жидкости с твердой фазой через пористый фильтр, например через фильтровальную бумагу. Поры (отверстия) в бумаге настолько малы, что через них проходит только жидкость, а все твердые частицы остаются на фильтре. Как скорость фильтрования, так и степень очистки зависят от размеров пор фильтра. На скорость фильтрования оказывает большое влияние вязкость жидкости и ее температура. Горячие жидкости всегда фильтруются быстрее, чем холодные.

Для фильтрования применяют стеклянную воронку (см. рис 4), которую укрепляют в кольце штатива или в специальной дощечке с отверстием для фильтрования. Иногда для небольших воронок делают специальный стеклянный крючок, с помощью которого можно прикрепить воронку непосредственно к стакану.

Фильтровальная бумага в отличие от обычной не проклеена, более волокниста, однородна и чиста. Выпускаются также готовые круглые фильтры из обеззоленной бумаги.

Для изготовления фильтра квадратный листок фильтровальной бумаги складывают пополам, затем вчетверо и округляют внешние края ножницами. Отделяют один слой бумаги, образуя угол, и подгоняют фильтр к воронке. Края фильтра должны быть на 3-5 мм ниже края воронки. Пространственный угол воронки должен быть равен 60°, но иногда раструб воронки несколько отклоняется от 60° в большую или меньшую сторону, и тогда фильтр не прилегает плотно к стенкам воронки. В этом случае, несколько меняя угол перегиба фильтра в ту или другую сторону, плотно подгоняют фильтр к стенкам воронки. После подгонки фильтра к воронке его смачивают чистым растворителем, для водных растворов - водой и, поглаживая чистым пальцем, прижимают фильтр к стенкам воронки так, чтобы под ним не было пузырьков воздуха.

Фильтрование проходит довольно быстро, когда в трубке воронки образуется столбик жидкости. Если столбик жидкости в трубке не образовался, тогда в воронку наливают воду выше краев фильтра, затем пальцем немного приподнимают фильтр и опускают его, стекающая жидкость почти всегда образует столбик в трубке воронки. Для этой же цели иногда удлиняют стеклянную трубку воронки резиновой трубкой.

Жидкость для фильтрования сливают в воронку по стеклянной палочке, прислонив к ней носик стакана. Палочку держат над фильтром вертикально, не прислоняя к фильтру. Если в растворе имеется осадок, то нужно дать ему отстояться, профильтровать осторожно большую часть жидкости и только под конец вылить раствор вместе с осадком. Это делается для того, чтобы осадок не забивал пор фильтра в начале фильтрования и чтобы оно не длилось слишком долго.

Для очистки растворов реактивов часто применяют плоеные (складчатые) фильтры, фильтрование через которые происходит гораздо быстрее. Плоеный фильтр делается также из квадратного листа фильтровальной бумаги. Сначала его складывают и обрезают как обычный фильтр (рис. 41). Затем отвертывают половину и правую четвертушку сгибают пополам внутрь, отгибают верхнюю восьмушку и складывают ее пополам, полученную шестнадцатую долю снова складывают пополам. По этой дольке (1/32 фильтра) складывают гармошкой весь фильтр. Готовый фильтр развертывают и вкладывают в воронку. Если фильтр большого размера, то он может прорваться во время фильтрования, для предотвращения этого в воронку вкладывают сначала небольшой обычный фильтр и плотно подгоняют к воронке. Необходимо также при складывании фильтра стремиться к тому, чтобы складки не подходили вплотную к центру фильтра.

Никогда не следует наливать жидкость до самого края фильтра. Конец трубки воронки нужно прислонить к стенке стакана для того, чтобы не было разбрызгивания фильтрата. Если фильтрат получился мутным, его фильтруют еще раз через тот же фильтр.

Концентрированные растворы кислот и щелочей, а также растворы перманганата фильтровать через бумагу нельзя, так как эти вещества разрушают ее. Их фильтруют обычно через стеклянную вату. Для этого вату обрабатывают сначала нагреванием с соляной кислотой, а затем хорошо промывают водой. Такую вату хранят в стакане с дистиллированной водой, а для фильтрования ее вкладывают в угол воронки. После конца фильтрования ее промывают водой и кладут в тот же стакан для хранения. Концентрированные растворы можно также фильтровать через стеклянные фильтрующие воронки с пористой пластинкой, применяя отсасывание.

Для отфильтровывания большой массы твердого вещества от жидкости применяют фильтрование с отсасыванием. Для этого пользуются колбой Бунзена и воронкой Бюхнера (см. рис. 6 и 29). Воронка вставляется в отверстие резиновой пробки, подобранной к горлу колбы Бунзена - толстостенной конической колбы с отростком для отсасывания; на отросток надевается резиновая трубка от водоструйного насоса (рис. 42).

На перегородку воронки кладут два бумажных фильтра соответствующего диаметра, смачивают их дистиллированной водой и плотно прижимают к перегородке стараясь удались все пузырьки воздуха из-под фильтров. Открыв водоструйный насос, проверяют, хорошо ли приложены фильтры. Если фильтры лежат хорошо, то будет слышен спокойный шумящий звук. Если же имеется подсос воздуха, то слышится свистящий звук. В этом случае фильтры прижимают пальцем к сетчатой перегородке до тех пор, пока свист не сменится спокойным шумящим звуком.

Не закрывая водоструйного насоса, сразу же вливают в воронку фильтруемую жидкость (до половины высоты воронки) и периодически добавляют ее, не допуская оголения фильтров. В силу разрежения, создаваемого в колбе Бунзена, жидкость довольно быстро протекает через фильтры. Осадок обычно одновременно с жидкостью переносят на фильтры, хорошо размешав смесь стеклянной палочкой. Рыхлый осадок уплотняют в воронке плоской стеклянной пробкой от бутыли. Отсасывание продолжают до полного прекращения появления капель с носика воронки. Необходимо следить, чтобы колба не наполнялась фильтратом до самого отростка.

Для прекращения отсасывания отсоединяют от колбы Бунзена резиновую трубку, идущую от водоструйного насоса, а затем выключают насос. Если водоструйный насос начать закрывать сразу, не отсоединив от «сосалки», то вода из насоса может попасть в фильтрат вследствие уменьшения давления внутри насоса. Воронку вынимают из колбы, вещество вытряхивают на фильтровальную бумагу и сушат. Фильтрование с отсасыванием применяют при перекристаллизации веществ.

Иногда требуется фильтровать горячие растворы, чтобы они не остывали во время фильтрования. Для этого применяют воронки горячего фильтрования.

Перегонка

Перегонкой (дистилляцией) производят очистку жидких веществ (например, воды, соляной кислоты, спиртов, эфира) от нелетучих примесей. Перегонка основана на том, что жидкость при нагревании до определенной температуры, зависящей от состава жидкости и атмосферного давления, начинает кипеть - бурно переходить в газообразное состояние (пар). Если этот пар охладить, отводя по газоотводной трубке, то он превратится в жидкость. Прибор для перегонки состоит из перегонной колбы 1 (рис. 43), холодильника 2 и приемника 4. Все нелетучие примеси, находящиеся в жидкости в растворенном состоянии, остаются в перегонной колбе.

Для сборки аппарата для перегонки жидкости используют колбу Вюрца - круглодонную колбу с длинной шейкой, от которой отходит длинная узкая отводная трубка. Горло колбы Вюрца закрывают резиновой или корковой пробкой с термометром; пробка должна быть плотно подогнана к горлу колбы. Термометр помещают так, чтобы его резервуар со ртутью был напротив отверстия отводной трубки и не касался стенок горла колбы. Конец отводной трубки пропускают через подогнанную пробку в холодильник Либиха на 3-4 см. Это сочленение также должно быть герметичным. На другом конце холодильника укрепляют аллонж 3 (см. рис. 43) - стеклянную изогнутую трубку, насаживая ее широким концом на пробку, надетую на конец холодильника, который пропущен через пробку на 2-3 см. Суженный конец аллонжа опускается в приемник, которым может быть любая посуда (колба, склянка).

Иногда холодильник Либиха состоит из отдельных частей, не спаянных между собой: холодильной трубки и холодильной рубашки. Для сборки такого холодильника трубку пропускают в рубашку и скрепляют с нею посредством отрезков (колец) резиновой трубки. Резиновую трубку подбирают к муфтам рубашки и надевают на них, затем пропускают через них холодильную (газоотводную) трубку, хорошо смазав ее вазелином и все время поворачивая.

При включении холодильника всегда подсоединяют нижний конец его рубашки, который обращен к приемной колбе, к водопроводному крану резиновой трубкой. От верхнего конца делают отвод в сточную раковину. Нужно следить, чтобы рубашка холодильника всегда была заполнена водой.

Колбу Вюрца укрепляют в лапке штатива так, чтобы ее можно было нагревать. Лапка должна обхватывать горло колбы выше отводной трубки. Подсоединяют колбу к холодильнику, укрепленному на втором штативе. Осторожно вынимают пробку с термометром, вставляют в горло колбы воронку с трубкой, спускающейся ниже отверстия отводной трубки, и наливают в колбу на 2/3 ее объема жидкость, которую нужно перегонять. Помещают в колбу несколько стеклянных капилляров, запаянных с одного конца, чтобы обеспечить равномерное кипение жидкости. Недопустимо во время перегонки бурное вскипание жидкости, так как это может привести к попаданию капель в отводную трубку и к загрязнению дистиллята.

Закрыв колбу пробкой с термометром и проверив надежность сборки прибора, подают воду в холодильник и затем включают нагрев. Обогрев можно вести на газовой горелке через сетку, на водяной бане или другими средствами. После закипания жидкости обогрев уменьшают настолько, чтобы происходило равномерное кипение.

Никогда не следует выпаривать жидкость полностью, ее должно оставаться в перегонной колбе 10-15% от первоначально взятого объема. Для новой заправки колбы обогрев выключают, дают колбе несколько остыть, осторожно вынимают пробку с термометром и доливают жидкость через воронку. Время от времени остатки с загрязнениями следует удалять из перегонной колбы.

Изготовляют также перегонные аппараты целиком из стекла. Такой аппарат состоит из перегонной и приемной колб и холодильника на пришлифованных пробках. Для термометра в пробке перегонной колбы имеется специальный кармашек. Согнутый конец трубки холодильника перед шлифом к приемной колбе имеет отросток для отвода избытка газов.

Многие жидкости имеют свои характерные особенности, которые необходимо учитывать при перегонке. Поэтому прежде чем приступать к перегонке какого-либо вещества, нужно по руководству хорошо ознакомиться с особенностями ее проведения.

В некоторых случаях для перегонки применяют специальный прибор. Он представляет собой цилиндрический сосуд вместимостью 1л, снабженный навинчивающейся крышкой с внутренним конусом (рис. 44). Внутри цилиндра размещены треножник и чашка. Все детали сделаны из фторопласта-4.

Этот прибор используют, например, для получения особо чистой фтористоводородной кислоты для спектрального анализа кремния и его соединений.

В цилиндрический сосуд наливают 500-600 мл очищаемой фтористоводородной кислоты, добавляют 0,2 г спектрально чистого угольного порошка и тщательно перемешивают фторопластовым шпателем. На треножник ставят пустую чашку - приемник. Цилиндрический сосуд закрывают крышкой и помещают на кипящую водяную баню. Крышку сосуда с внешней стороны охлаждают сухим льдом (твердой CO2). Пары кислоты, охлаждаясь на конусообразной стороне крышки, конденсируются и стекают с вершины конуса в чашку. Перегонку ведут со скоростью 15-20 мл/ч. Первую фракцию и кубовой остаток (по 10% от загруженной кислоты) отбрасывают. Для анализа используют среднюю фракцию. Очищенную кислоту хранят во фторопластовом баллончике с хорошо завинчивающейся пробкой.

В описанном приборе кроме фтористоводородной кислоты можно перегонять соляную и азотную кислоты, а также очищать растворы аммиака, этиловый спирт, воду.

Перекристаллизация

Сущность перекристаллизации состоит в том, что очищаемое вещество растворяют в возможно малом объеме горячей воды, раствор отфильтровывают от нерастворимых примесей и фильтрат быстро охлаждают. Вследствие уменьшения растворимости при охлаждении часть вещества выделяется из раствора в виде кристаллов. Растворенные загрязняющие вещества, присутствующие в значительно меньших количествах, чем основное вещество, не выкристаллизовываются, а остаются в маточном растворе. Отделив кристаллы от маточного раствора фильтрованием, получают вещество в довольно чистом состоянии.

Иногда очистить вещество однократной перекристаллизацией не удается, тогда ее повторяют 2-3 раза. Перекристаллизацией нельзя очистить вещество от загрязнений, участвующих в построении кристаллической решетки очищаемого вещества, т.е. образующих с ним так называемые смешанные кристаллы.

Перекристаллизация щавелевой кислоты. Перекристаллизованную щавелевую кислоту состава H2C2O4-2H2O применяют для установки титра растворов перманганата калия KMnO4 или растворов щелочей NaOH или KOH.

Берут в стакан вместимостью 300 мл на лабораторных химических весах 100 г продажной щавелевой кислоты; затем отмеряют мерным цилиндром и наливают в стакан 150 мл горячей дистиллированной воды. Нагревают на газовой горелке (на асбестированной сетке) до полного растворения навески, перемешивая содержимое стакана стеклянной палочкой. На дне может остаться лишь незначительный белый аморфный нерастворимый остаток.

Горячий раствор весь сразу фильтруют через складчатый фильтр, вложенный в воронку с короткой трубкой. В длинной трубке воронки может произойти кристаллизация щавелевой кислоты, и трубка будет забита кристаллами. Во избежание кристаллизации во время фильтрования желательно пользоваться воронкой для горячего фильтрования. Фильтрат собирают в стакан, поставленный в кристаллизатор с холодной водой. После окончания фильтрования фильтрат хорошо перемешивают в течение 10 мин стеклянной палочкой.

Выделившиеся кристаллы отфильтровывают на воронке Бюхнера с отсасыванием. В воронку вкладывают два фильтра, смочив и плотно прижав их ко дну воронки, и включают водоструйный насос. Весь раствор вместе с кристаллами выливают в воронку. Остатки кристаллов очищают стеклянной палочкой со стенок стакана в воронку. Отсасывание ведут до тех пор, пока не прекратится появление капель на кончике трубки воронки, а кристаллы не приобретут снежно-белый цвет. После отсасывания сначала отсоединяют колбу от насоса, а затем закрывают кран водоструйного насоса.

Воронку вынимают из колбы и вытряхивают из нее кристаллы на сложенный вдвое лист фильтровальной бумаги. Стеклянной палочкой распределяют кристаллы ровным слоем, накрывают другим листом сложенным вдвое, и отжимают кристаллы между листами. Если бумага стала мокрой, берут новые листы и снова отжимают кристаллы до тех пор, пока бумага не перестанет увлажняться. Кристаллы «перебирают» стеклянной палочкой, и если они не пристают к ней или полностью отстают от нее при легком встряхивании, то высушивание считают законченным. Кристаллы оставляют на воздухе еще на полчаса, распределив их тонким слоем на листе фильтровальной бумаги, затем пересыпают в банку или бюкс с хорошей пробкой. Выход около 70 г.

Оуэн предложил удобный прибор для перекристаллизации органических веществ для микроанализа (рис. 45). В таком приборе, но только большего размера, можно проводить перекристаллизацию небольших проб веществ для обычного анализа.

Прибор состоит из двух одинаковых кристаллизационных трубок 1 и 5 и центральной части 3. Герметичность соединений создается фланцами 6 и 8, сжатыми пружинным зажимом. Каждую часть изготовляют из стеклянной трубки диаметром 10 мм с припаянными обычными фланцами. Удобно иметь несколько кристаллизационных трубок 1 и 5. Фильтрование проводят через один или два плотных бумажных фильтра 7 диаметром 2 см. Для удаления влаги трубки предварительно хорошо просушивают. Сушку можно проводить продуванием теплого воздуха через отростки 2 или 4, поместив в них кусочки ваты для защиты от попадания атмосферной пыли.

Для отделения нерастворимых примесей в трубке 5 растворяют навеску твердого вещества в соответствующем растворителе, заполняя трубку на 1 см ниже выхода отростка 4. Трубку закрывают пробкой, закрепляют на штативе и подогревают до полного растворения навески. Затем прибор собирают, как показано на рис. 45, вставив между фланцами бумажный фильтр, осторожно переворачивают и фильтруют горячий раствор в трубку-приемник 1. Для ускорения фильтрования можно применять слабое отсасывание через отросток 2 или слабое давление через отросток 4.

Трубку-приемник 1, содержащую чистый фильтрат, используют для кристаллизации вещества путем охлаждения или выпаривания растворителя с отсасыванием. Для кристаллизации центральную часть с трубкой отъединяют и заменяют пробкой (фланец 8). После выделения кристаллов пробку вынимают, на фланцы накладывают бумажный фильтр, прикрепляют центральную часть (трубкой вверх) к другой приемной трубке 5. Затем прибор переворачивают и маточный раствор фильтруют с отсасыванием. Приемник 5 отделяют, фильтрат выливают в сборник, а трубку ополаскивают растворителем. Приемник снова присоединяют к центральной части и прибор переворачивают. Для промывки в трубку с кристаллами через отросток 4 вводят промывную жидкость и содержимое встряхивают. Прибор переворачивают и промывную жидкость отфильтровывают с отсасыванием. Промывку можно повторять много раз.

После промывки основная часть кристаллов оказывается на фильтре. Центральную часть прибора отделяют. Кристаллы вместе с фильтром стряхивают постукиванием на чистый лист фильтровальной бумаги. Кристаллы счищают на фильтр и с фильтром сушат в сушильном шкафу. Гигроскопические вещества высушивают прямо в трубке, при этом центральную часть снимают и заменяют стеклянной крышкой. Отсасывание проводят через трубку 4.

Экстракция

Слово экстракция означает извлечение. Очистка жидкостей экстракцией основана на различной растворимости отдельных веществ в разных растворителях. Очистку экстракцией проводят, взбалтывая раствор с несмешивающейся с водой жидкостью, в которой загрязнения растворяются лучше, чем в воде. Экстракцию проводят в делительной воронке (рис. 46).

Раствор, подвергающийся очистке, наливают не более чем до половины делительной воронки. Туда же добавляют подходящий растворитель, не смешивающийся с водой, в количестве не более половины взятого для очистки раствора. Закрыв делительную воронку и придерживая одной рукой пробку, а другой кран, плавным движением перевертывают воронку несколько раз вверх и вниз. Нельзя энергично взбалтывать содержимое воронки, так как при этом может образоваться устойчивая эмульсия, на расслаивание которой потребуется много времени. Перемешивание нужно вести 15-20 мин так, чтобы слои жидкости как бы скользили один по другому. Время от времени взбалтывание прекращают и в перевернутом состоянии (когда кран приподнят кверху) осторожно приоткрывают кран для выравнивания давления газов.

По окончании экстрагирования делительной воронке дают постоять в штативе до тех пор, пока не произойдет полное расслоение жидкостей и между ними не установится резкая граница. После этого открывают пробку, а затем, осторожно открывая кран, сливают нижний слой жидкости в стакан. Для уменьшения скорости вытекания жидкости под конец истечения кран слегка прикрывают. Затем кран закрывают и выливают оставшуюся жидкость через горло воронки в другой стакан. Для полноты очистки экстракцию повторяют несколько раз.

Очистка дитизона. Для фотометрического определения цинка готовят 0,02%-ный раствор очищенного дитизона в хлороформе. Для этого 0,2 г дитизона растворяют в 20 мл хлороформа и проводят очистку раствора экстракцией. Раствор помещают в делительную воронку вместимостью 600 мл, добавляют 200 мл 2%-ного (по объему) раствора аммиака и хорошо взбалтывают. Дитизон при этом переходит в аммиачный слой. Слой хлороформа отделяют и выбрасывают. Добавляют еще 5 мл хлороформа, снова перемешивают и сливают слой хлороформа. Промывку порциями по 5 мл хлороформа продолжают до тех пор, пока слой хлороформа не перестанет окрашиваться в красный цвет.

В воронку к аммиачному раствору дитизона приливают 50 мл хлороформа, 4 мл соляной кислоты (1:1) и по каплям избыток ее до кислой реакции, затем хорошо перемешивают. Дитизон переходит в хлороформ; раствор окрашивается в зеленый цвет. Слой хлороформа промывают два раза водой. Раствор дитизона сливают в мерную колбу вместимостью 100 мл, доводят хлороформом до метки и хорошо перемешивают.

Чистое вещество содержит частицы только одного вида. Примерами могут служить серебро (содержит только атомы серебра), серная кислота и оксид углерода (IV ) (содержат только молекулы соответствующих веществ). Все чистые вещества имеют постоянные физические свойства, например, температуру плавления (Т пл ) и температуру кипения (Т кип ).

Вещество не является чистым, если содержит какое-либо количество одного или нескольких других веществ – примесей .

Загрязнения понижают температуру замерзания и повышают температуру кипения чистой жидкости. Например, если в воду добавить соль, температура замерзания раствора понизится.

Смеси состоят из двух или более веществ. Почва, морская вода, воздух – все это примеры различных смесей. Многие смеси могут быть разделены на составные части – компоненты – на основании различия их физических свойств.

Традиционными методами, которые используются в лабораторной практике с целью разделения смесей на отдельные компоненты, являются:

    фильтрование,

    отстаивание с последующей декантацией,

    разделение с помощью делительной воронки,

    центрифугирование,

    выпаривание,

    кристаллизация,

    перегонка (в том числе фракционная перегонка),

    хроматография,

    возгонка и другие.

Фильтрование. Для отделения жидкостей от взвешенных в ней мелких твердых частиц применяют фильтрование (рис.37) , т.е. процеживание жидкости через мелкопористые материалы – фильтры , которые пропускают жидкость и задерживают на своей поверхности твердые частицы. Жидкость, прошедшая через фильтр и освобожденная от находившихся в ней твердых примесей, называется фильтратом .

В лабораторной практике часто применяют гладкие и складчатые бумажные фильтры (рис.38) , сделанные из непроклеенной фильтровальной бумаги.

Для фильтрования горячих растворов (например, с целью перекристаллизации солей), применяют специальную воронку для горячего фильтрования (рис.39) с электрическим или водяным обогревом).

Часто применяют фильтрование под вакуумом . Фильтрование под вакуумом используют для ускорения фильтрования и более полного освобождения осадка от раствора. Для этой цели собирают прибор для фильтрования под вакуумом (рис.40) . Он состоит из колбы Бунзена, фарфоровой воронки Бюхнера, предохранительной склянки и вакуум-насоса (обычно водоструйного).

В случае фильтрования суспензии малоорастворимой соли кристаллы последней могут быть промыты дистиллированной водой на воронке Бюхнера для удаления с их поверхности исходного раствора. Для этой цели используют промывалку (рис.41) .

Декантация . Жидкости могут быть отделены от нерастворимых твердых частиц декантацией (рис.42) . Этот метод можно применять, если твердое вещество имеет большую плотность, чем жидкость. Например, если речной песок добавить в стакан с водой, то при отстаивании он осядет на дно стакана, потому что плотность песка больше, чем воды. Тогда вода может быть отделена от песка просто сливанием. Такой метод отстаивания и последующего сливания фильтрата и называется декантацией.

Центрифугирование. Д ля ускорения процесса отделения очень мелких частиц, образующих в жидкости устойчивые суспензии или эмульсии, используют метод центрифугирования . Этим методом можно разделить смеси жидких и твердых веществ, различающихся по плотности. Разделение проводится в ручных или электрических центрифугах (рис.43) .

Разделение двух несмешивающихся жидкостей, имеющих различную плотность и не образующих устойчивых эмульсий, можно осуществить с помощью делительной воронки (рис.44) . Так можно разделить, например, смесь бензола и воды. Слой бензола (плотность = 0,879 г/см 3 ) располагается над слоем воды, которая имеет большую плотность ( = 1,0 г/см 3 ). Открыв кран делительной воронки, можно аккуратно слить нижний слой и отделить одну жидкость от другой.

Выпаривание (рис.45) – этот метод предусматривает удаление растворителя, например, воды из раствора в процессе нагревания его в выпарительной фарфоровой чашке. При этом выпариваемая жидкость удаляется, а растворенное вещество остается в выпарительной чашке.

Кристаллизация – это процесс выделения кристаллов твердого вещества при охлаждении раствора, например, после его упаривания. Следует иметь в виду, что при медленном охлаждении раствора образуются крупные кристаллы. При быстром охлаждении (например, при охлаждении проточной водой) образуются мелкие кристаллы.

Перегонка - метод очистки вещества основанный на испарении жидкости при нагревании с последующей конденсацией образовавшихся паров. Очистка воды от растворенных в ней солей (или других веществ, например, красящих) перегонкой называется дистилляцией , а сама очищенная вода – дистиллированной.

Фракционная перегонка (рис.46) применяется для разделения смесей жидкостей с различными температурами кипения. Жидкость с меньшей температурой кипения закипает быстрее и раньше проходит через фракционную колонку (или дефлегматор ). Когда эта жидкость достигает верха фракционной колонки, то попадает в холодильник , охлаждается водой и через алонж собирается в приемник (колбу или пробирку).

Фракционной перегонкой можно разделить, например, смесь этанола и воды. Температура кипения этанола 78 0 С, а воды 100 0 С. Этанол испаряется легче и первым попадает через холодильник в приемник.

Возгонка – метод применяется для очистки веществ, способных при нагревании переходить из твердого состояния в газообразное, минуя жидкое состояние. Далее пары очищаемого вещества конденсируются, а примеси, не способные возгоняться, отделяются.

1. ЦЕЛЬ РАБОТЫ

Цель работы – ознакомление с основными приемами работы в лаборатории органической химии , лабораторными приборами и посудой, методами выделения и очистки органических веществ.

2. ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ

МЕТОДЫ ОЧИСТКИ ОРГАНИЧЕСКИХ ВЕЩЕСТВ

Фильтрование

Фильтрование проводят для отделения осадка от жидкой фазы при разделении веществ, их очистке, при промывании осадка и т. д.

Для отделения твердых частиц от жидкости в простейшем случае сливают жидкость с осадка (способ декантации), в других случаях используют фильтрование через воронку с фильтром. Эффективность фильтрования зависит от пористости фильтра, а также от перепада давления по обе стороны от фильтра. Фильтры изготавливаются чаще всего из различных сортов фильтровальной бумаги, стеклоткани, пористого стекла и фторопласта.

Для простого фильтрования используют воронку со складчатым фильтром.

Более эффективное фильтрование проводят под вакуумом , для чего обычно используют два типа фильтровальных воронок: "воронки Шотта" с пористой стеклянной пластинкой и воронки Бюхнера, снабженной хорошо подогнанным бумажным фильтром, соединенные с колбой Бунзена.

Бумажный фильтр предварительно смачивают на воронке растворителем, который затем отсасывают. После этого раствор с кристаллами переносят на бумажный фильтр. Отсасывание маточной жидкости обеспечивается водоструйным насосом, подключенным к колбе Бунзена через предохранительную склянку. Необходимая скорость фильтрования достигается регулировкой струи воды в водоструйном насосе, который создает пониженное давление в колбе Бунзена.


Для удаления остатков маточного раствора влажные кристаллы промывают несколькими порциями минимального количества растворителя при аккуратном перемешивании кристаллов. Иногда осадок на фильтре только пропитывают растворителем, и затем включают вакуум для его отсасывания.

Кристаллы на фильтре отжимают от растворителя плоской стороной стеклянной пробки, далее осадок направляют на высушивание.

Высушивание

Под высушиванием понимают процесс освобождения вещества в любом агрегатном состоянии от примесей какой-либо жидкости, чаще всего воды, как растворителя.

Высушивание жидкостей проводят, используя вещества, способные поглощать воду – осушители. При этом осушители не должны взаимодействовать с осушаемым веществом и растворителем, растворяться в них, а также вызывать окисление, полимеризацию или другие нежелательные процессы. Осушитель должен быть максимально эффективным, т. е. обеспечивать наиболее быстрое и полное удаление из системы жидких примесей.

Перечень веществ, используемых в качестве осушителей органических жидкостей, и их целевое назначение даны в таблице 1.1. Для проведения высушивания органический раствор встряхивают с небольшим количеством осушителя (до 3% от массы раствора), образующийся водный раствор осушителя сливают. Процесс повторяют до тех пор, пока кристаллы осушителя не перестанут расплываться в органическом растворе.

Высушивание твердых веществ от легколетучих примесей проводят на воздухе или при оптимальной температуре в сушильном шкафу. Для высушивания в вакууме используют вакуум-эксикаторы, обычно таким образом сушат гигроскопические соединения.

Таблица 1.1 − Вещества-осушители для органических жидкостей и растворов

Осушитель

Что можно сушить

Что нельзя сушить

Углеводороды, их галогенопроизводные, простые и сложные эфиры, альдегиды, кетоны, нитросоединения и растворы веществ, чувствительных к различным воздействиям

Углеводороды и их галогенопроизводные, простые эфиры, нитросоединения

Спирты, фенолы, альдегиды, кетоны, кислоты, амины, амиды, сложные эфиры

Амины, кетоны, спирты

Вещества с кислотными свойствами

Амины, простые эфиры, углеводороды

Альдегиды, кетоны, кислоты

Углеводороды, простые эфиры, третичные амины

Галогенопроизводные углеводородов, спирты, кислоты (Опасность взрыва!)

Н2SО4 (конц.)

Нейтральные и кислые вещества

Ненасыщенные углеводороды, спирты, кетоны, основания

Углеводороды и их галогенопроизводные, растворы кислот

Основания, спирты, простые эфиры

Молекулярные сита (алюмосиликаты Na, Ca)

Применяются для высушивания растворителей. Регенерируется нагреванием в вакууме при 150-300оС

Ненасыщенные углеводороды

Перекристаллизация

Прибор для перекристаллизации малых количеств вещества. 1 - стаканчик с кипящим растворителем; 2 - воронка; 3 - складчатый фильтр; 4 - пробирка для отсасывания; 5 - стеклянный «гвоздик»; 6 - фильтр.

Перекристаллизация является простейшим методом разделения и очистки твердых веществ.

Метод кристаллизации состоит из следующих стадий: растворение твердого вещества в минимальном объеме кипящего растворителя (приготовление насыщенного раствора); фильтрование горячего раствора для удаления нерастворимых примесей (если они присутствуют); охлаждение раствора с образованием кристаллов; фильтрование кристаллов от маточного раствора и их высушивание.


Для успешной кристаллизации чрезвычайно важным является правильный выбор растворителя. В растворителе очищаемое вещество должно легко растворяться при нагревании и практически не растворяться на холоду, а также в нем должны хорошо растворяться примеси. Общая закономерность растворимости – "подобное растворяется в подобном " , т. е. полярные соединения более растворимы в полярных растворителях, чем в неполярных, и наоборот.

После горячего фильтрования насыщенный раствор медленно охлаждают до комнатной температуры, а затем помещают в холодильник для образования кристаллов. Часто для ускорения процесса кристаллизации потирают стеклянной палочкой с острыми краями по внутренней стенке колбы на уровне жидкости, что приводит к образованию неровностей на стеклянной поверхности, которые служат центрами роста кристаллов. После охлаждения образовавшиеся кристаллы отделяют от маточного раствора фильтрованием, промывают и сушат.

Возгонка

Прибор для возгонки: 1 -часовое стекло; 2- стакан; 3 - термометр; 4- песочная баня.

Возгонка заключается в испарении вещества при нагревании ниже его температуры плавления с последующей конденсацией паров на охлажденной поверхности. Очистка твердого вещества возгонкой возможна только в том случае, если давление его паров выше, чем давление паров примесей. Когда давление паров твердого вещества соответствует приложенному давлению, получают наилучшие результаты. Например, стильбен возгоняют при температуре 100°С и давлении 20 мм рт. ст.

Возгонку проводят в вакууме в приборе сублиматоре или при атмосферном давлении в фарфоровой чашке, закрытой сверху фильтром с многочисленными проколотыми иголкой дырочками и стеклянной воронкой. Перед сублимацией из очищаемого вещества удаляют растворители и другие летучие продукты во избежание загрязнения сублимата.

Перегонка

летучие" растворители с температурой кипения до 100°С при температуре бани 50-60°С.

Простейшая перегонка является эффективной только в том случае, если компоненты разделяемой смеси отличаются по температурам кипения не менее чем на 60°С. Во всех других случаях вещества подвергают фракционированной перегонке с использованием разного типа перегонных колонн (ректификация). Простейшей колонкой может служить полая трубка или елочный дефлегматор Вигре.

При атмосферном давлении обычно перегоняют вещества с температурами кипения от 40°С до 180°С, жидкости с температурой кипения меньше 40°С перегоняются с большими потерями. При более высокой температуре кипения возникает опасность термического разложения вещества, и его перегоняют в вакууме, поскольку при снижении давления температура кипения понижается.

Экстракция

Прибор для экстракции: 1 - делительная воронка; 2 - жидкость с большей плотностью; 3 - жидкость с меньшей плотностью; 4- пробка, 5 - лапка, 6 и 7 - приемники.

Экстракция – это способ извлечения одного или нескольких компонентов смеси или их разделение путем перевода из одной фазы в другую.

Твердофазная экстракция (экстрагирование) заключается в извлечении органических соединений из твердых тел с помощью обработки органическим растворителем – экстрагентом, в жидкофазной экстракции одна фаза является, как правило, водным раствором, другая – органическим. Экстрагент должен иметь минимальную растворимость в воде и быть селективным в отношении экстрагируемого вещества.

Обычно экстракцию проводят из водной (нейтральной, кислой, основной) фазы растворителем, не смешивающимся с водой (например, дихлорметан, хлороформ, эфиры и др.). В случае полярных продуктов (например, спирты, карбоновые кислоты, амины) водную фазу перед экстракцией насыщают хлористым натрием (высаливание).

МЕТОДЫ ИДЕНТИФИКАЦИИ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Определение показателя преломления жидкости

Показатель преломления вещества относится к важнейшим физическим константам и используется для идентификации веществ и проверки их чистоты. Показатель преломления определяется природой вещества и длиной волны падающего света и является постоянной величиной для данного вещества. Чаще всего показатель преломления определяется при 20°С для D линии натрия (589 нм), что и отражается обозначением nD. Для жидких органических веществ показатель преломления уменьшается с ростом температуры и обычно колеблется от 1,3 до 1,8.

При падении луча света на границу раздела двух прозрачных однородных сред часть его отражается под углом, равным углу падения a, а часть - преломляется под углом b. Согласно закону преломления отношение синуса угла падения к синусу угла преломления есть постоянная величина, называемая относительным показателем (или коэффициентом) преломления второго вещества по отношению к первому:

Для определения показателя преломления используют рефрактометры.

Дифференциал" href="/text/category/differentcial/" rel="bookmark">дифференциально-термического анализа (ДТА) иди дифференциально-сканирующей калориметрии (ДСК).

Справочная литература" href="/text/category/spravochnaya_literatura/" rel="bookmark">справочной литературе данные о растворимости указанного вещества в данном растворителе при комнатной температуре и нагревании, проводят расчет объема растворителя, необходимого для перекристаллизации 2 г загрязненного образца. Оставляют 0,1 г образца для определения температуры плавления.

2. Помещают образец в стакан, добавляют рассчитанное количество растворителя и нагревают до полного растворения твердой фазы при перемешивании. Далее стакан снимают с плитки, охлаждают содержимое до комнатной температуры на рабочем столе, а по мере необходимости – в холодильнике.

3. Выпавший осадок отделяют фильтрованием через бумажный фильтр, затем фильтр с осадком подсушивают на воздухе.

4. Собирают с фильтра кристаллы на предварительно взвешенное часовое стекло, подсушивают их в сушильном шкафу и взвешивают.

Опыт 2. Очистка вещества методом возгонки.

1. Получают у преподавателя загрязненное вещество (нафталин, бензойную кислоту), взвешивают его. Оставляют 0.1 г исходного вещества для определения температуры плавления. Находят по справочнику температуру плавления чистого вещества.

2. Небольшую фарфоровую чашку покрывают листом фильтровальной бумаги с мелкими проколами (20-30 отверстий) и плотно прижимают фильтровальную бумагу опрокинутой стеклянной воронкой, отверстие которой закрыто ватой.

3. Фарфоровую чашку с образцом помещают на электроплитку и осторожно нагревают до температуры ниже его температуры плавления на 10-20°С. Нагревание проводят до образования кристаллов на поверхности стеклянной воронки.

4. Прекращают нагревание установки, осторожно охлаждают, собирают кристаллы и их взвешивают. Определяют температуры плавления образцов до и после перекристаллизации. Сравнивают полученные данные со справочными.

ОБРАБОТКА РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА

1. В лабораторном журнале приводят теоретические сведения по данной теме.

2. Записывают ход выполнения опытов 1 и 2.

3. Выписывают справочные данные и делают необходимые вычисления.

4. Результаты помещают в таблицу 1.2.

Таблица 1.2 − Сводная таблица результатов экспериментов.

техники безопасности , которые следует выполнять при работе с органическими веществами.

2. Показатель преломления бензола, определенный экспериментально, оказался равным 1,521. Является ли вещество чистым? Каким способом его можно очистить?

3. Какие вещества-осушители вы знаете? Какие из этих веществ можно использовать для высушивания ксилола?

4. Приведите пример применения экстракции.

5. На основании справочных данных о температурах кипения гептана и октана объясните, почему смесь этих веществ нельзя разделить перегонкой.

Вещество, название, химическая формула

Константы

(справочные данные):

плотность, Тпл

Масса загрязненного вещества, г

Масса вещества после очистки, г

Объем раствори-теля, мл

Температура возгонки или плавления, °С

Очистка растворимых солей методом перекристаллизации . Метод перекристаллизации основан на различной зависимости растворимости веществ и загрязняющих его примесей от температуры. Очистку вещества методом перекристаллизации проводят по следующей схеме: при повышенной температуре готовят насыщенный раствор очищаемого вещества, затем для удаления нерастворимых примесей раствор фильтруют через воронку для горячего фильтрования и охлаждают до низкой температуры. При понижении температуры растворимость вещества понижается и основная часть очищаемого вещества выпадает в осадок, растворимые примеси остаются в растворе, поскольку относительно них раствор остается ненасыщенным. Выпавшие кристаллы отделяют от маточного раствора и высушивают.

В зависимости от свойств очищаемого вещества возможны различные методики проведения перекристаллизации.


Перекристаллизация без удаления растворителя . Метод применяется для солей, растворимость которых сильно зависит от температуры (например, нитрат натрия, алюмокалиевые квасцы, сульфат меди (II) и др.). Раствор после горячего фильтрования охлаждают на воздухе до низкой температуры, выпавшие кристаллы отфильтровывают. Возможно также провести перекристаллизацию без удаления растворителя для солей, растворимость которых мало зависит от температуры. В этом случае применяется метод высаливания. Для этого раствор после горячего фильтрования охлаждают до комнатной температуры и добавляют равный по объему раствор концентрированной соляной кислоты, при этом очищаемое вещество выпадает в осадок.


Перекристаллизация с удалением растворителя . Метод применяется для солей, растворимость которых мало зависит от температуры (например, хлорид натрия и др.). Раствор после горячего фильтрования переносят во взвешенную фарфоровую чашку и упаривают на водяной бане приблизительно до половины объема. Затем раствор охлаждают до комнатной температуры. Выпавшие кристаллы отфильтровывают.

Перекристаллизованное вещество (за исключением хлорида аммония и кристаллогидратов) сушат в сушильном шкафу до постоянной массы. Хлорид аммония и кристаллогидраты высушивают на воздухе. Сухие соли помещают в герметичные склянки.


Очистка летучих веществ методом сублимации (возгонки) . Метод применяется для очистки твердых веществ, способных при нагревании переходить непосредственно из твердой фазы в газообразную, минуя жидкую фазу. Образующийся газ конденсируется охлаждаемой частью прибора. Сублимацию обычно проводят при температуре, близкой к температуре плавления вещества. Метод применим для очистки от примесей, которые не способны возгоняться. Возгонкой можно очистить йод, серу, хлорид аммония.


Очистка жидкостей методом перегонки . Метод основан на том, что каждое вещество имеет определенную температуру кипения. Наиболее простой вариант перегонки - перегонка при обычном давлении, который заключается в нагревании жидкости до кипения и конденсации её паров. Перегонку проводят в приборе, состоящем из колбы Вюрца (или круглодонной колбы с газоотводной трубкой), прямого холодильника, колбы-приемника, аллонжа, термометра и нагревательного прибора. Загрязненную жидкость нагревают в перегонной колбе до температуры кипения, пары отводят в холодильник и собирают сконденсировавшуюся жидкость в приемник.

Дополнительный материал для учителя

8 класс по теме «Очистка веществ»

Аннотация

В предлагаемом дополнительном материале дано описание специальных методов очистки: диализ, комплексообразование, образование летучих соединений, хроматография и ионный обмен, дистилляция и ректификация, экстракция, зонная плавка.

Разделение и очистка веществ являются операциями, обычно связанными между собой. Разделение смеси на составляющие чаще всего преследует цель получения чистых, по возможности без примесей, веществ. Однако само понятие о том, какое вещество следует считать чистым, еще окончательно не установлено, так как требования к чистоте вещества меняются. В настоящее время методы получения химически чистых веществ приобрели особое значение.

Разделение и очистка веществ от примесей основываются на использовании их определенных физических, физико-химических или химических свойств.

Техника важнейших методов разделения и очистки веществ (перегонка и сублимация, экстракция, кристаллизация и перекристаллизация, высаливание) описана в соответствующих главах. Это наиболее распространенные приемы, чаще всего используемые не только в лабораторной практике, но и в технике.

В отдельных наиболее сложных случаях используют специальные методы очистки.

Диализ может быть использован для разделения и очистки веществ, растворенных в воде или в органическом растворителе. Этим приемом чаще всего пользуются для очистки высокомолекулярных веществ, растворенных в воде, от примесей низкомолекулярных или от неорганических солей.

Для очистки методом диализа необходимы так называемые полупроницаемые перегородки, или «мембраны» Особенность их заключается в том, что они имеют поры, позволяющие проходить через них веществам, размер молекул или ионов которых меньше размеров пор, и задерживать вещества, размеры молекул или ионов которых больше размеров пор мембраны. Таким образом, диализ можно рассматривать как особый случай фильтрования.

В качестве полупроницаемых перегородок или мембран могут быть использованы пленки из очень многих высокомолекулярных и высокополимерных веществ. В качестве мембран применяют пленки из желатина, из альбумина, пергамент, пленки из гидратцеллюлозы (типа целлофана), из эфиров целлюлозы (ацетат, нитрат и др.), из многих продуктов полимеризации и конденсации. Из неорганических веществ находят применение: неглазурованный фарфор, плитки из некоторых сортов обожженной глины (типа коллоидных глин, как бентонит), прессованное мелкопористое стекло, керамика и др.

Основными требованиями к мембранам являются: 1) нерастворимость в том растворителе, на котором приготовлен диализируемый раствор; 2) химическая инертность по отношению как к растворителю, так и к растворенным веществам; 3) достаточная механическая прочность.

Многие мембраны способны набухать в воде или другом растворителе, теряя при этом механическую прочность. Набухшая пленка может быть легко повреждена или разрушена. В подобных случаях пленку для диализа изготовляют на какой-нибудь прочной основе, например на ткани, инертной к растворителю (хлопчатобумажная, шелковая, из стекловолокна, из синтетического волокна и др.), или па фильтровальной бумаге. Иногда для придания мембранам механической прочности их укрепляют металлическими сетками (армирование) из соответствующего металла (бронза, платина, серебро и др.).

Для получения различной пористости у мембран из эфиров целлюлозы или из некоторых других высокополимерных веществ в соответствующие лаки вводят различное количество воды. При высыхании лаковой пленки получается мембрана молочного цвета, имеющая заданную пористость. Для диализа применяют приборы называемые диализаторами. Скорость диализа неодинакова для различных веществ и зависит от ряда условий и свойств вещества, которое очищают. Повышение температуры раствора и обновление растворителя способствуют ускорению диализа. Во многих случаях вместо обычного диализа применяют электродиализ. Применение электрического тока при диализе ускоряет процесс и создает ряд других преимуществ.

Осаждение малорастворимых веществ. Этим приемом широко пользуются для аналитических целей, получая осадки, содержащие только какое-нибудь одно, неорганическое или органическое, вещество. Полученный осадок может быть дополнительно очищен. Аппаратура, применяемая для проведения этого метода, зависит от свойств веществ и свойств растворителей.

Комплексообразование является одним из приемов выделения чистых веществ, особенно неорганических. Комплексные соединения могут быть или труднорастворимыми в воде, но легкорастворимыми в органических растворителях, или наоборот. В первом случае осадки обрабатывают, как описано выше. Если же комплексное соединение легко растворяется в воде, его можно извлечь в чистом виде из водного раствора путем экстрагирования подходящим органическим растворителем или же разрушить комплекс тем или иным путем. Приемом комплексообразования можно выделить металлы в очень чистом виде. Это особенно касается редких и рассеянных металлов, которые могут быть выделены в виде комплексов с органическими веществами.

Образование летучих соединений. Этим приемом можно пользоваться в том случае, если образуется летучее соединение только выделяемого вещества, например какого-либо металла. В том случае, если одновременно образуются летучие соединения примесей, этот прием применять не рекомендуется, так как освобождение от летучих примесей может оказаться затруднительным. Во многих случаях образование летучих галогенидов (хлористые или фтористые соединения) некоторых веществ может оказаться очень эффективным как метод очистки, особенно в сочетании с вакуумной перегонкой. Чем ниже температура возгонки или кипения интересующего нас вещества, тем легче его отделить от других и очистить фракционной перегонкой или диффузией. Скорость диффузии газообразных веществ через полупроницаемые перегородки зависит от плотности и молекулярной массы очищаемого вещества и почти обратно пропорциональна им.

Хроматография и ионный обмен. Эти методы основаны на использовании явления сорбции для извлечения веществ, содержащихся в растворах. Метод хроматографии особенно важен для концентрирования веществ, содержание которых в исходном растворе очень мало, а также для получения чистых препаратов. При помощи этого метода были получены редкоземельные элементы высокой чистоты. Многие фармацевтические и органические препараты очищают и получают в чистом виде при помощи этого метода. Почти во всех случаях, когда поставлена задача очистки или отделения какого-либо вещества из смеси, находящейся в растворе, хроматография и ионный обмен могут оказаться надежными методами.

Для ионного обмена применяют так называемые иониты, представляющие собой неорганические или органические адсорбенты (преимущественно смолы разных марок). По своим химическим свойствам они разделяются на следующие группы: катиониты, аниониты и амфолиты. Катиониты обменивают катионы. Аниониты обладают способностью обменивать анионы. Иониты способны к ионному обмену до полного насыщения их поглощаемым ионом.

Перекристаллизация. Из всех методов очистки солей и других твердых электролитов и органических соединений на первое место по применимости следует поставить перекристаллизацию. Это связано как с простотой процесса, так и с его эффективностью (во всяком случае, при грубой очистке). Воспользовавшись повышением растворимости солей при нагревании, можно приготовить насыщенный при температуре кипения раствор, отфильтровать его от механических примесей и охладить; при этом зачастую удается получить кристаллы достаточно чистой соли. Это связано с тем, что при охлаждении раствор оказывается пересыщенным только по отношению к основному веществу, в то время как примеси, присутствующие в количестве долей процента, остаются в маточном растворе. Такова элементарная схема процесса перекристаллизации. В действительности перекристаллизация протекает гораздо сложнее, так как ей может сопутствовать ряд процессов, значительно снижающих эффективность очистки при кристаллизации. Так, ионы или молекулы примесей могут быть механически захвачены образующимися кристаллами основного вещества (окклюзия, инклюзия). Неизбежна также большая или меньшая адсорбция ионов примесей на поверхности кристаллов, хотя при образовании крупных кристаллов, имеющих небольшую удельную поверхность, роль адсорбции невелика. Образование твердых растворов (изоморфизм) может иметь место в том случае, когда ионы основной соли и ионы примеси отличаются по размерам не более чем на 10-15% и оба вещества кристаллизуются в одинаковой системе. Тогда часть ионов основной соли в процессе роста кристаллов может быть замещена ионами примеси. Может происходить также захват посторонних ионов любого размера, связанный с нарастанием кристалла вокруг адсорбированных ионов. Такие ионы, поскольку они не входят в твердый раствор, представляют собой дефекты кристаллической решетки.

Вполне понятно, что разделение кристаллизацией изоморфных веществ в принципе невозможно. В этих случаях иногда приходится прибегать к особым приемам. Так, при очистке алюмоаммонийных квасцов, предназначенных для изготовления лазерных рубинов, не удается перекристаллизацией избавиться от примеси Fe 3+ , поскольку алюмоаммонийные и железоаммонийные квасцы изоморфны. При рН 2 коэффициент очистки (коэффициентом очистки называется отношение содержания примеси в неочищенном продукте к содержанию примеси в препарате после очистки) не превышает 10. Но если Fe 3+ восстановить до Fe 2+ , то изоморфизм устраняется, и коэффициент очистки доходит до 100. Эффективность очистки вещества перекристаллизацией зависит также от его растворимости. При растворимости вещества, лежащей в пределах 5-30%, очистка происходит значительно полнее, чем при растворимости 75-85%. Отсюда следует, что перекристаллизация нецелесообразна при очистке очень легкорастворимых веществ.

Дистилляция и ректификация. Очистка веществ дистилляцией основана на том, что при испарении смеси жидкостей пар получается обычно иного состава происходит его обогащение легкокипящим компонентом смеси. Поэтому из многих смесей можно удалить легко кипящие примеси или, наоборот, перегнать основное вещество, оставив трудно кипящие примеси в перегонном аппарате. Часто приходится сталкиваться с системами, при перегонке которых все компоненты отгоняются в неизменном соотношении (азеотропные смеси). В этом случае разделения не происходит, и очистка перегонкой невозможна. В качестве примеров азеотропных смесей можно привести водные растворы НСl (20,24% HCl) и этилового спирта (95,57% С 2 Н 5 ОН).

Для получения чистых веществ (особенно при глубокой очистке) вместо простой дистилляции предпочитают использовать ректификацию, т.е. процесс, при котором происходит автоматическое сочетание процессов дистилляции и конденсации. Не вдаваясь в теорию ректификации, укажем лишь, что в ректификационной колонне пар встречается с различными фракциями конденсата, при этом часть менее летучего компонента конденсируется из пара в жидкость, а часть более летучего компонента переходит из жидкости в пар. Проходя через множество полок ("тарелок") ректификационной колонны, пар успевает настолько обогатиться более летучим компонентом, что на выходе из колонны практически содержит только этот компонент (или азеотропную смесь).

Степень разделения зависит от того, насколько пар обедняется примесью по сравнению с жидкой фазой. Расчет показывает, что в современных лабораторных ректификационных колоннах высотой 1-2 м можно осуществить очистку в 10 5 раз и более, если даже содержание примеси в равновесном паре только на 10% меньше, чем в жидкости. Этим объясняется широкое использование дистилляции и ректификации в производстве чистых веществ.

Ректификация используется для очистки не только жидких препаратов. Общеизвестно применение ректификации для разделения сжиженных газов (кислород, азот, инертные газы и т. д.).

В последние годы с помощью ректификации стали очищать многие твердые вещества, сравнительно легко испаряющиеся. Удалось успешно очистить хлористый алюминий (от Fe), серу (от Se), SiCl 4 , Zn, Cd, SbСl 3 . Содержание примесей понижается до 10 -4 и даже до 10 -7 %. Таким образом, ректификация может быть отнесена к чрезвычайно эффективным методам глубокой очистки. Особенно эффективно протекают процессы ректификационной очистки при низких температурах; при повышении температуры резко возрастает загрязнение очищаемого вещества материалом аппаратуры.

Экстракция. Экстракционный метод разделения веществ применяют уже в течение многих десятилетий, особенно в аналитической химии, но только в последнее время он приобрел очень важное значение для получения чистых и сверхчистых веществ. Метод основан на извлечении одного из компонентов раствора с помощью несмешивающегося с раствором органического растворителя.

Достоинства экстракционного метода следующие:

 экстракцию можно проводить из чрезвычайно разбавленных растворов (при достаточно большом коэффициенте распределения)

 при экстрагировании не происходит соосаждения, и экстрагируемое вещество может быть количественно выделено в чистом виде

 метод позволяет разделять такие вещества, которые не удается разделить иными методами, например, при очистке солей уранила от примесей Fe, В, Мо и др.

Зонная плавка. Этот метод очистки основан на различии растворимости примеси в твердом веществе и в расплаве. Образец твердого вещества медленно передвигают через узкую зону нагревания, при этом происходит постепенное расплавление отдельных участков образца, находящихся в данный момент в зоне нагревания. Примеси, содержащиеся в образце, накапливаются в жидкой фазе, вместе с ней передвигаются вдоль образца и по окончании плавки оказываются в конце образца. Как правило, зонную плавку повторяют многократно. Зачастую образец движется через несколько обогреваемых зон, что позволяет в несколько раз сократить время очистки.

Достоинствами зонной плавки являются простота аппаратурного оформления, сравнительно невысокие температуры проведения процесса (по сравнению с ректификацией) и высокая эффективность очистки. Таким путем, например, очищается германий до содержания примесей порядка 10 -8 %. С каждым годом все большее число веществ, предназначенных для самых ответственных целей, проходит очистку методом зонной плавки. С равным успехом можно очищать неорганические и органические продукты. Правда, зонная плавка не всегда может быть успешно использована. Например, зонной плавкой нельзя отделить Аu от Ag.

Документ

... «Очистка загрязненной поваренной соли» Аннотация В дополнительном материале дана классификация основных методов разделения веществ ... и других точных отраслях промышленности. Для очистки веществ применяются различные способы разделения смесей...

  • Аннотация основной профессиональной образовательной программы по специальности спо 240705. 01 аппаратчик-оператор в биотехнологии

    Документ

    Аннотация основной профессиональной образовательной... ним разрабатываются ФГАУ «ФИРО». Аннотации размещены согласно циклам дисциплин. Общепрофессиональные... и вредных веществ Тема 1.2.7 Условия хранения Тема 1.2.8 Инструкции по очистке и хранению...

  • Аннотация примерной программы учебной дисциплины «Экология» Цели и задачи дисциплины

    Документ

    Части цикла «Экология» Аннотация примерной программы учебной дисциплины « ... . Взаимодействие живого и биокостного вещества . Энергетический баланс биосферы. Биогеохимические... выбросов. Современные технологии очистки и снижение выбросов загрязняющих...