Утомление - особый вид функционального состояния человека, временно возникающий под влиянием продолжительной или интенсивной работы и приводящий к снижению ее эффективности. Утомление проявляется в уменьшении силы и выносливости мышц, ухудшении координации движений, в возрастании затрат энергии при выполнении одной и той же внешней работы, в замедлении реакций и скорости переработки информации, ухудшении памяти, затруднении процесса сосредоточения и переключения внимания и других явлениях.

Локализация и механизмы развития утомления

До настоящего времени нет полной ясности о локализации утомления , т. е. о тех конкретных морфологических структурах и физиологических системах, функциональные изменения в которых определяют развитие состояния утомления, а также о механизмах утомления, т. е. о тех конкретных изменениях в деятельности ведущих функциональных систем, которые в конечном итоге обуславливают развитие утомления и снижение работоспособности. Необходимо всегда помнить, что утомление - это очень сложное явление, вызываемое изменениями в различных системах.

Первым признаком возникновения утомления при физической работе является нарушение автоматизма рабочих движений, вторым - нарушение координации движений, третьим - увеличение напряжения вегетативных функций при одновременном снижении эффективности работы.

Значение регулирующих систем в развитии утомления

При выполнении любой работы происходят функциональные изменения в состоянии нервных центров, управляющих деятельностью мышц и регулирующих их вегетативное обеспечение. Чем интенсивнее работа, тем эти изменения более выражены. Наиболее подвержены утомлению нейроны двигательной зоны коры. Считают, что снижение активности нейронов высших моторных центров происходит вследствие возникновения охранительного торможения (И. П. Павлов), развивающегося в связи с необходимостью активировать высокочастотными импульсами максимально возможное число спинальных мотонейронов сокращающихся мышц, а также в результате интенсивной обратной проприорецептивной импульсации от рецепторов работающих мышц, суставов и связок, достигающей нейронов коры головного мозга.

При выполнении физических упражнений большой длительности причиной утомления являются изменения в деятельности вегетативной нервной и эндокринной систем. Эти изменения приводят к нарушению регуляции вегетативных функций и энергетического обеспечения работающих мышц. Наиболее важное следствие нарушений регуляции физиологических функций при работе - снижение доставки кислорода к работающим мышцам и ухудшение эффективности энергообмена.

Значение исполнительного звена нервно-мышечного аппарата в развитии утомления.

Причинами развития утомления помимо изменений в центральной нервной системе могут служить процессы, происходящие в области нервно-мышечного синапса, в зоне активации потенциалом действия сократительных элементов мышечного волокна (возможно, вследствие нарушения процессов освобождения ионов кальция из саркоплазматического ретикулума), или в самих сократительных процессах.

Изменения в нервно-мышечном синапсе. При длительной и высокочастотной импульсации мотонейронов содержание ацетилхолина в концевых веточках двигательного аксона постепенно уменьшается. Чем выше частота импульсации мотонейрона, тем больше вероятность отставания скорости ресинтеза ацетилхолина от скорости его расходования. В этой ситуации не каждый импульс может передаваться с нерва на мышечное волокно. Следовательно, снижение сократительной активности мышцы (развивающееся утомление) может быть следствием пресинаптического нервно- мышечного блока проведения возбуждающих импульсов с аксона на мембрану мышечного волокна.

При длительной высокочастотной импульсации мотонейрона в синаптической щели может накапливаться избыточное количество ацетилхолина, так как из-за большого его количества он не успевает разрушаться ацетилхолинэстеразой. В этом случае способность постсинаптической мембраны генерировать потенциал действия значительно снижается. Возникает частичный или полный постсинаптический нервно-мышечный блок. Следствием этого типа блокады передачи возбуждения на мышечные волокна также является снижение их сократительной активности, т. с. развитие утомления.

Изменения в процессах электромеханического сопряжения мышечных волокон. Под влиянием потенциалов действия из саркоплазматического ретикулума освобождаются ионы кальция. Кальций связывается с тропонином. Начинается процесс сокращения. Всс эти изменения объединяются понятием "электромеханическое сопряжение". В настоящее время показано, что в процессе утомления происходит накопление и задержка ионов кальция в поперечных трубочках. Это приводит к тому, что меньшее количество кальция будет освобождаться из саркоплазматического ретикулума для запуска процесса сокращения. В этих случаях утомление будет вызываться недостаточностью кальциевых механизмов, необходимых для развития сокращения. Снижение pH, уменьшение содержания крсатинфосфата и гликогена, увеличение температуры и другие факторы увеличивают задержку ионов кальция в поперечных трубочках, усиливая тем самым скорость развития утомления.

Изменения в мышцах, вызывающие развитие утомления. Существенную роль в развитии утомления и снижении сократительной способности мышц играют процессы, происходящие в них самих. Существует по крайней мере три фактора, связанных с энергетикой сокращения и способных приводить к утомлению: 1) истощение энергетических ресурсов; 2) накопление в мышце продуктов метаболизма; 3) дефицит кислорода в работающей мышце. Значение и доля каждого из этих трех механизмов в развитии утомления неодинаковы при выполнении различных упражнений.

Истощение энергетических ресурсов. Реальное значение в развитии утомления может иметь истощение внутримышечных запасов фосфагенов и углеводных ресурсов (гликогена в работающих мышцах и печени). Снижение запасов фосфагенов играет наиболее важную роль, в утомлении при выполнении физических упражнений с предельной длительностью работы от 10 с до 2-3 мин. При упражнениях, длящихся менее 10 с, запасы АТФ и КрФ уменьшаются лишь на 20-50 %. Запасы мышечного гликогена за столь короткое время практически не меняются. Следовательно, при столь короткой работе истощение запасов фосфагенов и углеводных ресурсов не может быть ведущей причиной утомления.

При работах, длящихся от 10 с до 2-3 мин, запасы АТФ в мышце падают на 30-40 %, а креатинфосфата - на 90 %. Содержание гликогена уменьшается лишь на 5-15 %. Таким образом, при работе длительностью от 20 с до 1-3 мин истощение внутримышечных запасов фосфагенов является одной из важных причин развивающегося утомления. Чем ниже мощность работы (чем больше ее предельная длительность), тем меньше снижаются запасы фосфагенов в активных мышцах. При длительных аэробных нагрузках уменьшение запасов внутримышечных фосфагенов столь незначительно, что не играет заметной роли в развитии мышечного утомления.

Истощение углеводных ресурсов (гликогена в работающих мышцах) при некоторых упражнениях играет существенную роль в развитии утомления. При работе предельной длительности (до 15 мин) содержание гликогена в мышцах снижается на 10-40 %. Во время работы продолжительностью 60-90 мин гликоген расходуется почти полностью. Следовательно, истощение мышечного гликогена в этих случаях будет ведущим механизмом в развитии утомления.

При выполнении аэробных упражнений средней и малой мощности наряду с углеводами значительную роль в энергообеспечении работающих мышц играют жиры. Поэтому в конце такой работы гликоген в мышцах не расходуется полностью. Следовательно, истощение его запасов нельзя рассматривать в качестве основной причины утомления. Однако при длительных (более 2 ч) аэробных упражнениях возрастает использование мышечными клетками глюкозы крови, поступающей из печени в результате распада содержащегося в ней гликогена. По мере истощения запасов гликогена в печени происходит уменьшение содержания глюкозы в крови, которая является единственным энергетическим источником для клеток нервной системы. При заметном снижении концентрации глюкозы в крови наступают нарушения в деятельности различных отделов ЦНС, которые вторично усугубляют развитие утомления.


Накопление в мышцах продуктов метаболизма. При выполнении упражнений субмаксимальной мощности, т. е. при предельной длительности работы от 20 с до 2-3 мин ведущую роль в энергообеспечении работающих мышц играет анаэробный гликолиз. В этих условиях концентрация молочной кислоты в крови может возрастать в 10-20 и больше раз, а в самих работающих мышцах даже в сотни раз. С накоплением молочной кислоты в мышечных клетках повышается концентрация водородных ионов и снижается pH. При значительном снижении pH происходит снижение скорости связывания ионов кальция с тропонином, благодаря этому уменьшается скорость образования актин-миозиновых мостиков и, следовательно, снижается сократительная функция мышц. Кроме того, ключевые ферменты гликолиза, такие как фосфорилаза и фосфофруктокиназа, снижают свою активность при увеличении кислотности. Это приводит к уменьшению скорости гликолиза, а значит, и скорости энергопродукции, необходимой для поддерживания требуемой мощности работы.

Показано также, что искусственное увеличение кислотности крови путем приема до работы капсул с хлоридом аммония заметно уменьшает продолжительность работы. И наоборот, введение бикарбоната натрия, приводящее к снижению кислотности, сопровождается увеличением работоспособности. Итак, можно считать, что накопление молочной кислоты при упражнениях длительностью от 20 с до 3 мин - существенная причина развития мышечного утомления.

Недостаточное поступление к мышце кислорода. Снижение доставки кислорода к работающим мышечным волокнам также является одной из причин утомления. Уменьшение напряжения кислорода внутри клетки возникает при его недостаточном поступлении либо вследствие пониженного напряжения кислорода в крови, связанного с его низким парциальным давлением во вдыхаемом воздухе (работы в условиях средне- и высокогорья), либо из-за ограничения притока нормально оксигенизированной крови к активным мышцам. Причинами недостаточного кровоснабжения мышц являются сравнительно медленное раскрытие внутримышечных сосудов в начале работы (60-90 с) и периодическое или постоянное сжатие сосудов во время динамической или статической работы.

При циклических упражнениях степень ограничения кровотока и, следовательно, выраженность внутриклеточной гипоксии зависит от интенсивности сокращений, определяющей суммарную продолжительность всех фаз сокращения (сосуды зажаты), а также от объема активной мышечной массы, влияющего на величину доли МОК, направляемой к каждой из работающих мышц.

При изометрических упражнениях с силой сокращения больше 40-50 % от МПС внутримышечные сосуды практически полностью зажаты. Кровоток через них почти равен нулю. В этих условиях мышцы работают в ишемических условиях со всеми вытекающими отсюда последствиями.

Итак, при циклических упражнениях максимальной и субмаксимальной мощности, а также при статической работе с усилиями больше 40-50 % от МПС доставка кислорода к активным мышечным волокнам значительно отстает от нужд метаболизма. В результате такой местной гипоксии развивается утомление. Причинами, приводящими к снижению работоспособности, при этом являются: 1) дефицит кислорода, увеличивающий долю продукции энергии за счет анаэробных процессов; 2) уменьшение скорости вымывания из мышц молочной кислоты и других продуктов метаболизма вследствие снижения в них кровотока.

Помимо рассмотренных механизмов, играющих роль в развитии периферического (мышечного) утомления, необходимо учитывать, что скорость развития утомления зависит от композиции мышц. Показано, что быстрые двигательные единицы по сравнению с медленными подвержены утомлению в большей степени. Лица с высоким процентным содержанием медленных волокон нс только обладают большей аэробной выносливостью, но и способны более длительное время воспроизводить максимальные усилия после коротких периодов отдыха по сравнению с людьми, мышцы которых содержат больший процент быстрых волокон.

Важное значение в развитии утомления имеет температура работающих мышц. Эффекты воздействия повышенной температуры существенно различаются в зависимости от вида работы. Так, в частности, повышение температуры ядра тела увеличивает время (при одинаковой мощности) короткой, интенсивной работы на тредбане или велоэргометре. Причинами этого являются усиление кровоснабжения активных мышц и повышение активности ферментов энергетического метаболизма.

И наоборот, увеличение температуры тела при длительно выполняемой работе ускоряет развитие утомления и снижает работоспособность человека. Причиной этого является то, что с увеличением температуры тела выше 38-39 °С избыток тепла должен поступать к коже и отдаваться в окружающую среду. Носитель тепла в данном случае - кровь. Чем выше поднимается температура тела, тем большее количество кожных сосудов расширяется и тем, следовательно, большее количество крови кожа отбирает у работающих мышц. Поскольку значительная часть крови перераспределяется в сосуды кожи, работающие мышцы недополучают необходимое для их аэробного энергетического метаболизма количество кислорода. В результате этого для восполнения запасов АТФ в процессе анаэробного гликолиза образуется больше молочной кислоты.

Таким образом, при значительном повышении температуры тела уменьшение кровоснабжения работающих мышц и увеличение продукции молочной кислоты являются одними из основных причин, ускоряющих развитие утомления при длительной аэробной работе.

Физическое утомление - временное понижение или прекращение работоспособности мышц, вызванное их работой. Утомление регистрируется на эргограмме; оно проявляется в том, что снижается высота сокращения мышцы или происходит полное прекращение ее сокращений. При утомлении мышца нередко не может полностью расслабиться и остается в состоянии длительного укорочения (контрактуры). Утомление является сначала результатом изменений функций нервной системы, и прежде всего головного мозга, нарушения передачи нервных импульсов между нейронами и между двигательным нервом и мышцей, а затем уже следствием изменения функций самой мышцы.


Так как при утомлении понижаются функции нервной системы и рецепторов мышц, суставов и сухожилий, то наступают нарушения координации движений.

Мышечное утомление является результатом не только изменения функций нервной и мышечной систем, но и изменения регуляции нервной системой всех вегетативных функций.

Утомление при динамической работе наступает в результате изменения обмена веществ, деятельности желез внутренней секреции и других органов и в особенности сердечно-сосудистой и дыхательной систем. Снижение работоспособности сердечно-сосудистой и дыхательной систем нарушает кровоснабжение работающих мышц, а следовательно, доставку кислорода и питательных веществ и удаление остаточных продуктов обмена веществ.

Скорость наступления утомления зависит от состояния нервной системы, частоты ритма, в котором производится работа, и от величины груза (нагрузки). Увеличение нагрузки и учащение ритма ускоряет наступление утомления.

При утомлении нередко появляется усталость - ощущение утомления, которое отсутствует, если работа вызывает интерес. Наоборот, когда работа производится без интереса, усталость наступает раньше и она больше, хотя признаки утомления отсутствуют. Способность приходить в состояние утомления называется утомляемостью. Утомление вызывается также обстановкой, в которой оно раньше возникало. Если же работа была интересной и не вызывала усталости и утомления, то обстановка, в которой она производилась, не вызывает усталости и утомления. Изменение обстановки, в которой многократно возникало утомление, или многодневный, длительный отдых приводят к исчезновению условного рефлекса на утомление.

Мышечное утомление является нормальным физиологическим процессом. Восстановление работоспособности мышц происходит уже во время выполнения работы. После окончания работы работоспособность не только восстанавливается, но и превышает исходный ее уровень до работы.

Рис. 32. Изменение работоспособности в дни отдыха после предельной работы

Утомление нужно отличать от переутомления.

Переутомление - нарушение функций организма, патологический процесс, вызванный хроническим утомлением, суммированием утомления, так как отсутствуют условия для восстановления работоспособности организма.

Важно предупредить появление переутомления. Наступлению переутомления способствуют антигигиенические условия труда, физических упражнений, внешней среды, нарушение питания.

При переутомлении появляются хронические головные боли, большая раздражительность, апатия, вялость, днем сонливость, нарушение сна ночью и бессонница, ухудшение аппетита, мышечная слабость. Нарушается координация мышечной работы и вегетативных функций, происходят снижение обмена веществ и падение веса тела, учащение, а иногда значительное замедление сердцебиений, понижение кровяного давления, уменьшение дыхательного объема и др. Нет желания заниматься трудом, физической культурой и спортом, особенно тем его видом, который вызвал переутомление.

Создание нормальных гигиенических условий физического труда и физических упражнений, переключение на новый интересный вид физического труда и спорта, перевод в другую обстановку, длительный отдых, увеличение времени пребывания на свежем воздухе и сна, улучшение питания, прием углеводов и витаминов устраняют переутомление.


Занятия спортом, большие физические нагрузки и просто постоянные тренировки с целью поддержания отличной физической формы – все это влияет на состояние мышц. Особенность анатомии мышечной системы – утомляемость после некоторого времени получения нагрузки. Что же такое утомляемость? Как она проявляет себя и как воздействует на процесс тренировок? Все эти сведения обязательно должен знать спортсмен, опытный или начинающий – не важно.

Физиологические особенности мышечной системы: утомление мышц

Утомлением называют специфическое снижение работоспособности, иногда может наблюдаться полная невозможность двигаться или выполнять любую другую физическую работу. Все это является результатом усилений, длительной работы или тренировок, выполняемых достаточно долгое время.

Как проявляется утомление мышц и от чего оно зависит? Главное условие утомления не поступление крови к мышцам, а от волн возбуждения – сокращения, возникающие во время физической деятельности, которыми являются, в том числе и физические нагрузки.

На наступление утомления влияет высота сокращений – чем оно выше, тем быстрее оно проявит себя. В начале работы – физической нагрузки в случае спортивных тренировок, высота сокращений сначала увеличивается, а затем постепенно снижается. Признаками, на которые спортсмен должен в обязательном порядке обратить внимание, утомления являются:

  • уменьшение периодических сокращений, производимых мышцами;
  • увеличение их временной продолжительности;
  • нарастание напряженности.

В первую очередь развитию утомления способствует изменение в обмене веществ, после процессы изменяются и в системе кровообращения. Температура тела постепенно увеличивается, что является основным признаком физической усталости. Важно знать, что чем выше обмен веществ и активнее кровообращение спортсмена, тем позднее наступает слабость и утомление. Во время физических нагрузок – спортивных тренировок, утомление наступает быстрее, если использовать груз – штанги, тренажеры и прочий спортивный инвентарь. Соответственно, если не применять дополнительный спортивный инвентарь – утомление насупит намного позже, но и эффект от тренировки будет ниже.

Медицинские основы утомления мышц

Многочисленные медицинские исследования дали возможность понять природу наступления утомления. Чаще всего помогает в этом обычный электрический ток – раздражение мышц наступает после воздействия направленным небольшим разрядом, как только прекратить подобное воздействие – утомление прекращается.

Быстрое восстановление можно объяснить также очень просто – дело в том, что в клетках быстро происходят различные химические реакции, в том числе, изменение химического состава белка. Энергию выделяет и гликоген, распад которого и позволяет наделять мышцы силой, как только энергия заканчивается, наступает усталость, а затем и утомление.

Важно знать для хорошей тренировки

Каждому спортсмену, который выбрал физические тренировки основой для поддержания хорошей формы, важно знать, что запасы гликогена, имеющегося в организме не безграничны – составляют всего лишь около 350 г. Такого запаса хватит, при условии интенсивной нагрузки, хватит на 2 часа, после этого в крови будет отмечено снижение сахара. Все это приведет к снижению работоспособности, а затем и к полной невозможности выполнять работу дальше.

Раньше существовала теория, что в процессе распада гликогена выделяется своеобразное вещество – кинотоксин, который и влияет на утомляемость, однако все проведенные исследования и медицинские наблюдения за спортсменами позволило полностью опровергнуть ее.

Однако доказательства утомления мышц из-за отравления продуктами обмена веществ имеются. Основные элементы, определяющие усталость – фосфорная и молочная кислоты. Процесс усталости начинает проявлять себя в момент их образования. Существует теория засорения организма, согласно которой, остаточные продукты, которые образуются в результате химических процессов в результате обмена веществ, способствуют скорейшему наступлению утомляемости мышц, следовательно, и снижению производительности всего организма.

Накопление фосфорной и молочной кислот постепенно, но в значительной степени к концу тренировок уменьшает работоспособность мышцы. Исходя из этого для хорошей и продуктивной работы мышц, качественной работы и видимых результатов, важно поддерживать необходимый уровень гликогена в крови, а также употреблять большое количество пищи, содержащий белок.

Особенности мышечной структуры (работа и сила мышц)

Как выяснила медицина, мышечное волокно, находящееся в изолированном состоянии, утомляется быстрее, нежели целая мышца, задействованная в работе, даже если нагрузка будет в каждом случае одинаковой. Такое поведение мышечной структуры объяснить достаточно просто: конечные продукты, образующиеся в результате обмена веществ, быстрее удаляются из волокон мышечной ткани.

Важно помнить также, что в тренированной мышце утомляемость наступает позднее, так как синтез веществ происходит в ней быстрее, в нетренированной же все происходит с точностью до наоборот. Особенность – если промыть кровеносные сосуды и удалить из них продукты распада, возникающие в процессе интенсивного обмена веществ, то изолированные мышцы вновь готовы к работе и большим нагрузкам, а спортсмен перестает чувствовать утомление. Это происходит несмотря на то, что не полностью восстановился запас углеводов и кислорода, который также присутствует в тканях и обеспечивает полноценный рабочий процесс.

Полученные данные в результате исследований и наблюдений доказывают, что остаточные продукты, которые неизбежно возникают, как результат распада веществ - одна из основных причин ее утомления при выполнении силовых упражнений.

Существует научно – медицинская теория, именуемая удушением, согласно которой, утомление тканей в том числе и мышечной, наступает в том момент, когда заканчивается кислород. Между тем, известно немало случаев того, когда спортсмен мог выполнять серию упражнений, когда уровень кислорода в клетках и тканях был минимальным. Когда потребление кислорода вновь достигает высоких значений, оно все же не обеспечивает потребность организма в в полном объеме и именно поэтому работа в интенсивном режиме может продолжаться не больше получаса.

Учитывая все эти параметры и особенности работы мышечной системы, спортсмен должен соблюдать следующие правила:

  • употреблять много белковой пищи;
  • совершать ежедневные прогулки для того чтобы организм смог насытиться кислородом;
  • следить за уровнем гликогена;
  • не забывать о водном балансе, так как жидкость регулирует правильный обмен веществ.

Таким образом, мышечная утомляемость – процесс сложный, требующий постоянного наблюдения за собственными ощущениями. Не следует заниматься более 30 минут без перерыва, тогда тренировка будет действительно полезной и продуктивной для спортсмена.

Различают следующие режимы мышечного сокращения:

1. Изотонические сокращения . Длина мышцы уменьшается, а тонус не изменяется. В двигательных функциях организма не участвуют.

2. Изометрическое сокращения . Длина мышцы не изменяется, но тонус возрастает. Лежат в основе статической работы, например при поддержании позы тела.

3. Ауксотонические сокращения . Изменяются и длина, и тонус мышцы. С помощью их происходит передвижение тела и другие двигательные акты.

Максимальная сила мышц – это величина максимального напряжения, которое может развить мышца. Она зависит от строения мышцы, ее функционального состояния, исходной длины, а также пола, возраста, степени тренированности человека.

В зависимости от строения, выделяют мышцы с параллельными волокнами (например портняжная), веретенообразные (двуглавая мышца плеча), перистые (икроножная). У этих типов мышц различная площадь поперечного физиологического сечения – это сумма площадей поперечного сечения всех мышечных волокон, образующих мышцу. Наибольшая площадь поперечного физиологического сечения, а, следовательно, и сила, у перистых мышц. Наименьшая у мышц с параллельным расположением волокон.

При умеренном растяжение мышцы сила ее сокращения возрастает, но при перерастяжении уменьшается. При умеренном нагревании сила также увеличивается, а при охлаждении снижается. Сила мышц снижается при утомлении, нарушениях метаболизма и т.д. Максимальная сила различных мышечных групп определяется динамометрами (кистевым, становым и т.д.).

Для сравнения силы различных мышц определяют их удельную или абсолютную силу . Она равна максимальной силе, деленной на кв. см. площади поперечного сечения мышцы. Удельная сила икроножной мышцы человека составляет 62 кг/см 2 , трехглавой – 16,8 кг/см 2 , жевательных – 10 кг/см 2 .

Работу мышц делят на динамическую и статическую Динамическая выполняется при перемещении груза. При динамической работе изменяется длина мышцы и ее напряжение. Следовательно мышца работает в ауксотоническом режиме. При статической работе перемещения груза не происходит, т.е. мышца работает в изометрическом режиме.

Динамическая работа равна произведению веса груза на высоту его подъема или величину укорочения мышцы (А=М·h). Работа измеряется в кг·м, джоулях. Зависимость величины работы от нагрузки подчиняется закону средних нагрузок. При увеличении нагрузки работа мышц первоначально растет. При средних нагрузках она становится максимальной. Если увеличение нагрузки продолжается, то работа снижается. Такое же влияние на величину работы оказывает ее ритм. Максимальная работа мышцы осуществляется при среднем ритме. Особое значение в расчете величины рабочей нагрузки имеет определение мощности мышцы - это работа выполняемая в единицу времени (Р=А·Т). Единица измерения – ватт (Вт).

Утомление мышц

Утомление – это временное снижение работоспособности мышц в результате работы. Утомление изолированной мышцы можно вызвать ее ритмическим раздражением. В результате этого сила сокращений прогрессирующе уменьшается. Чем выше частота, сила раздражения и величина нагрузки, тем быстрее развивается утомление. При утомлении значительно изменяется кривая одиночного сокращения. Увеличивается продолжительность латентного периода, периода укорочения и особенно периода расслабления, но снижается амплитуда. Чем сильнее утомление мышцы, тем больше продолжительность этих периодов. В некоторых случаях полного расслабления не наступает. Развивается контрактура – это состояние длительного, непроизвольного сокращения мышцы.

Работа и утомление мышц исследуются с помощью эргографии. В прошлом веке, на основании опытов с изолированными мышцами, было предложено 3 теории мышечного утомления.

1. Теория Шиффа : утомление является следствием истощения энергетических запасов в мышце.

2. Теория Пфлюгера : утомление обусловлено накоплением в мышце продуктов обмена.

3. Теория Ферворна : утомление объясняется недостатком кислорода в мышце.

Действительно, эти факторы способствуют утомлению в экспериментах на изолированных мышцах. В них нарушается ресинтез АТФ, накапливается молочная и пировиноградная кислоты, недостаточно содержание кислорода. Однако в организме интенсивно работающие мышцы получают необходимый кислород, питательные вещества, освобождаются от метаболитов за счет усиления общего и регионального кровообращения. Поэтому были предложены другие теории утомления. В частности, определенную роль в утомлении принадлежит нервно-мышечным синапсам . Утомление в синапсе развивается из-за истощения запасов нейромедиатора. Однако главная роль, в утомлении двигательного аппарата принадлежит моторным центрам ЦНС. В прошлом веке И.М. Сеченов установил, что если наступает утомление мышц одной руки, то их работоспособность восстанавливается быстрее при работе другой рукой или ногами. Он считал, что это связано с переключением процессов возбуждения с одних двигательных центров на другие. Отдых с включением других мышечных групп он назвал активным .

В настоящее время установлено, что двигательное утомление связано с торможением соответствующих нервных центров, в результате метаболических процессов в нейронах, ухудшением синтеза нейромедиаторов, и угнетением синаптической передачи.

Основными показателями, характеризующими деятельность мышц, являются их сила и работоспособность.

Сила мышц. Сила - мера механического воздействия на мышцу со стороны других тел, которая выражается в ньютонах или кг-силах. При изотоническом сокращении в эксперименте сила определяется массой максимального груза, который мышца может поднять (динамическая сила), при изометрическом - максимальным напряжением, которое она может развить (статическая сила).

Одиночное мышечное волокно развивает напряжение в 100-200 кг-сил во время сокращения.

Степень укорочения мышцы при сокращении зависит от силы раздражителя, морфологических свойств и физиологического состояния. Длинные мышцы сокращаются на большую величину, чем короткие.

Незначительное растяжение мышцы, когда напрягаются упругие компоненты, является дополнительным раздражителем, увеличивает сокращение мышцы, а при сильном растяжении сила сокращения мышцы уменьшается.

Напряжение, которое могут развивать миофибриллы , определяется числом поперечных мостиков миозиновых нитей, взаимодействующих с нитями актина , так как мостики служат местом взаимодействия и развития усилия между двумя типами нитей. В состоянии покоя довольно значительная часть поперечных мостиков взаимодействует с актиновыми нитями. При сильном растяжении мышцы актиновые и миозиновые нити почти перестают перекрываться и между ними образуются незначительные поперечные связи.

Величина сокращения снижается также при утомлении мышцы.

Изометрически сокращающаяся мышца развивает максимально возможное для нее напряжение в результате активации всех мышечных волокон. Такое напряжение мышцы называют максимальной силой. Максимальная сила мышцы зависит от числа мышечных волокон, составляющих мышцу, и их толщины. Они формируют анатомический поперечник мышцы, который определяется как площадь поперечного разреза мышцы, проведенного перпендикулярно ее длине. Отношение максимальной силы мышцы к ее анатомическому поперечнику называется относительной силой мышцы, измеряемой в кг/см2.

Физиологический поперечник мышцы - длина поперечного разреза мышцы, перпендикулярного ходу ее волокон.

В мышцах с параллельным ходом волокон физиологический поперечник совпадает с анатомическим. У мышц с косыми волокнами он будет больше анатомического. Поэтому сила мышц с косыми волокнами всегда больше, чем мышц той же толщины, но с продольными волокнами. Большинство мышц домашних животных и особенно птиц с косыми волокнами перистого строения. Такие мышцы имеют больший физиологический поперечник и обладают большей силой (рис. 83).

Рис. 83. Анатомический (а-а) и физиологический (б-б) поперечники мышц с разным расположением волокон:


А - параллельноволокнистый тип; Б - одноперистый; В - двуперистый; Г - многоперистый.

Наиболее сильными являются многоперистые мышцы, затем идут одноперистые, двухперистые, полуперистые, веретенообразные и продольноволокнистые.

Много, -одно, -и двухперистые мышцы имеют большую силу и выносливость (мало утомляются), но ограниченную способность к укорачиванию, а остальные виды мышц хорошо укорачиваются, но быстро утомляются.

Сравнительным показателем силы разных мышц является абсолютная мышечная сила - отношение максимальной силы мышцы к ее физиологическому поперечнику, т.е. максимальный груз, который поднимает мышца, деленный на суммарную площадь всех мышечных волокон. Она определяется при тетаническом раздражении и при оптимальном исходном растяжении мышцы. У сельскохозяйственных животных абсолютная сила скелетных мышц колеблется от 5 до 15 кг-сил, в среднем 6-8 кг-сил на 1см2 площади физиологического поперечника. В процессе мышечной работы поперечник мышцы увеличивается и, следовательно, возрастает сила данной мышцы.

Работа мышц. При изометрическом и изотоническом сокращении мышца совершает работу.

Оценивая деятельность мышц, обычно учитывают только производимую ими внешнюю работу.

Работа мышцы, при которой происходит перемещение груза и костей в суставах называется динамической.

Работа (W) может быть определена как произведение массы груза (Р) на высоту подъема (h)

W= P·h Дж (кг/м, г/см)

Установлено, что величина работы зависит от величины нагрузки. Зависимость работы от величины нагрузки выражается законом средних нагрузок: наибольшая работа производится мышцей при умеренных (средних) нагрузках.

Максимальная работа мышцами выполняется и при среднем ритме сокращения (закон средних скоростей).

Мощность мышцы определяется как величина работы в единицу времени. Она достигает максимума у всех типов мышц так же при средних нагрузках и при среднем ритме сокращения. Наибольшая мощность у быстрых мышц.

Утомление мышц. Утомление - временное снижение или потеря работоспособности отдельной клетки, ткани, органа или организма в целом, наступающее после нагрузок (деятельности). Утомление мышц происходит при их длительном сокращении (работе) и имеет определенное биологическое значение, сигнализируя о истощении (частичном) энергетических ресурсов.

При утомлении понижаются функциональные свойства мышцы: возбудимость, лабильность и сократимость. Высота сокращения мышцы при развитии утомления постепенно снижается. Это снижение может дойти до полного исчезновения сокращений. Понижаясь, сокращения делаются все более растянутыми, особенно за счет удлинения периода расслабления: по окончании сокращения мышца долго не возвращается к первоначальной длине, находясь в состоянии контрактуры (крайне замедленное расслабление мышцы). Скелетные мышцы утомляются раньше гладких. В скелетных мышцах сначала утомляются белые волокна, а потом красные.

Из различных представлений о механизме утомления одной из наиболее ранних теорий, объясняющих утомление, была теория истощения, предложенная К. Шиффом. Согласно этой теории причиной утомления служит исчезновение в мышце энергетических веществ, в частности гликогена. Однако, детальное изучение показало, что в утомленных до предела мышцах содержание гликогена еще значительно. В дальнейшем Е. Пфлюгером была выдвинута теория засорения органа продуктами рабочего распада (теория отравления). Согласно этой теории, утомление объясняется накоплением большого количества молочной , фосфорной кислот и недостатком кислорода, а так же других продуктов обмена, которые нарушают обмен веществ в работающем органе и его деятельность прекращается.

Обе эти теории сформулированы на основании данных, полученных в экспериментах на изолированной скелетной мышце и объясняют утомление односторонне и упрощенно.

Дальнейшим изучением утомления в условиях целого организма установлено, что в утомленной мышце появляются продукты обмена веществ, уменьшается содержание гликогена, АТФ, креатинофосфата. Изменения наступают в сократительных белках мышцы. Происходит связывание или уменьшение сульфгидрильных групп актомиозина, в результате чего нарушается процесс синтеза и распада АТФ. Нарушения в химическом составе мышцы, находящейся в целостном организме, выражены в меньшей степени, чем в изолированной благодаря транспортной функции крови.

Исследованиями Н.Е. Введенского установлено, что утомление прежде всего развивается в нервно-мышечном синапсе в связи с низкой его лабильностью.

Быстрая утомляемость синапсов обусловлена несколькими факторами.

Во-первых, при длительном раздражении в нервных окончаниях уменьшается запас медиатора, а его синтез не поспевает за расходованием.

Во-вторых, накапливающиеся продукты обмена в мышце понижают чувствительность постсинаптической мембраны к ацетилхолину, в результате чего уменьшается величина постсинаптического потенциала. Когда он понижается до критического уровня, в мышечном волокне не возникает возбуждения.

И.М.Сеченов (1903)-, исследуя на сконструированном им эргографе для двух рук работоспособность мышц при поднятии груза, установил, что работоспособность утомленной правой руки восстанавливается полнее и быстрее после активного отдыха , т.е. отдыха сопровождаемого работой левой руки. Подобного же рода влияние на работоспособность утомленной руки оказывает сочетающееся с отдыхом раздражение индукционным током чувствительных (афферентных) нервных волокон кисти другой руки, а также работа ногами, связанная с подъемом тяжести, и вообще двигательная активность.

Таким образом, активный отдых, сопровождающийся умеренной работой других мышечных групп, оказывается более эффективным средством борьбы с утомлением двигательного аппарата, чем простой покой.

Причину наиболее эффективного восстановления работоспособности двигательного аппарата в условиях активного отдыха Сеченов с полным основанием связывал с действием на центральную нервную систему афферентных импульсов от мышечных, сухожильных рецепторов работающих мышц.

В организме в различных звеньях рефлекторной дуги утомление в первую очередь наступает в нервных центрах, особенно в клетках коры больших полушарий.

В настоящее время установлено, что функциональное состояние мышц находится под влиянием центральной нервной системы и прежде всего коры больших полушарий. Это влияние осуществляется через соматические нервы, вегетативную нервную систему и железы внутренней секреции.

По двигательным нервам к мышце поступают импульсы из спинного и головного мозга, вызывая ее возбуждение и сокращение, сопровождающиеся изменением физико-химических свойств и функционального состояния мышцы.

Импульсы, поступающие по симпатическим волокнам в мышцу, усиливают процессы обмена веществ, кровоснабжения и работоспособность мышцы. Такое же действие оказывают и медиаторы симпатической системы - адреналин и норадреналин.

Однако единой теории, объясняющей причины утомления, сущность утомления до настоящего времени нет, т.к. в естественных условиях утомление двигательного аппарата организма является многофакторным процессом.

Наступление утомления мышц можно задержать с помощью тренировки. Она развивает и совершенствует функциональные возможности всех систем организма: нервной, дыхательной, кровообращения, выделения и т.д.

При тренировке увеличивается объем мышц в результате роста и утолщения мышечных волокон возрастает мышечная выносливость. В мышце повышается содержание гликогена, АТФ и креатинфосфата, ускоряется течение процессов распада и восстановления веществ, участвующих в обмене. В результате тренировки коэффициент использования кислорода при работе мышц повышается, усиливаются восстановительные процессы вследствие активизации всех ферментативных систем, уменьшается расход энергии. При тренировке совершенствуется регуляторная функция центральной нервной системы, и в первую очередь, коры больших полушарий.