Тригонометрия, как наука, зародилась на Древнем Востоке. Первые тригонометрические соотношения были выведены астрономами для создания точного календаря и ориентированию по звездам. Данные вычисления относились к сферической тригонометрии, в то время как в школьном курсе изучают соотношения сторон и угла плоского треугольника.

Тригонометрия – это раздел математики, занимающийся свойствами тригонометрических функций и зависимостью между сторонами и углами треугольников.

В период расцвета культуры и науки I тысячелетия нашей эры знания распространились с Древнего Востока в Грецию. Но основные открытия тригонометрии – это заслуга мужей арабского халифата. В частности, туркменский ученый аль-Маразви ввел такие функции, как тангенс и котангенс, составил первые таблицы значений для синусов, тангенсов и котангенсов. Понятие синуса и косинуса введены индийскими учеными. Тригонометрии посвящено немало внимания в трудах таких великих деятелей древности, как Евклида, Архимеда и Эратосфена.

Основные величины тригонометрии

Основные тригонометрические функции числового аргумента – это синус, косинус, тангенс и котангенс. Каждая из них имеет свой график: синусоида, косинусоида, тангенсоида и котангенсоида.

В основе формул для расчета значений указанных величин лежит теорема Пифагора. Школьникам она больше известна в формулировке: «Пифагоровы штаны, во все стороны равны», так как доказательство приводится на примере равнобедренного прямоугольного треугольника.

Синус, косинус и другие зависимости устанавливают связь между острыми углами и сторонами любого прямоугольного треугольника. Приведем формулы для расчета этих величин для угла A и проследим взаимосвязи тригонометрических функций:

Как видно, tg и ctg являются обратными функциями. Если представить катет a как произведение sin A и гипотенузы с, а катет b в виде cos A * c, то получим следующие формулы для тангенса и котангенса:

Тригонометрический круг

Графически соотношение упомянутых величин можно представить следующим образом:

Окружность, в данном случае, представляет собой все возможные значения угла α — от 0° до 360°. Как видно из рисунка, каждая функция принимает отрицательное или положительное значение в зависимости от величины угла. Например, sin α будет со знаком «+», если α принадлежит I и II четверти окружности, то есть, находится в промежутке от 0° до 180°. При α от 180° до 360° (III и IV четверти) sin α может быть только отрицательным значением.

Попробуем построить тригонометрические таблицы для конкретных углов и узнать значение величин.

Значения α равные 30°, 45°, 60°, 90°, 180° и так далее – называют частными случаями. Значения тригонометрических функций для них просчитаны и представлены в виде специальных таблиц.

Данные углы выбраны отнюдь не случайно. Обозначение π в таблицах стоит для радиан. Рад — это угол, при котором длина дуги окружности соответствует ее радиусу. Данная величина была введена для того, чтобы установить универсальную зависимость, при расчетах в радианах не имеет значение действительная длина радиуса в см.

Углы в таблицах для тригонометрических функций соответствуют значениям радиан:

Итак, не трудно догадаться, что 2π – это полная окружность или 360°.

Свойства тригонометрических функций: синус и косинус

Для того, чтобы рассмотреть и сравнить основные свойства синуса и косинуса, тангенса и котангенса, необходимо начертить их функции. Сделать это можно в виде кривой, расположенной в двумерной системе координат.

Рассмотри сравнительную таблицу свойств для синусоиды и косинусоиды:

Синусоида Косинусоида
y = sin x y = cos x
ОДЗ [-1; 1] ОДЗ [-1; 1]
sin x = 0, при x = πk, где k ϵ Z cos x = 0, при x = π/2 + πk, где k ϵ Z
sin x = 1, при x = π/2 + 2πk, где k ϵ Z cos x = 1, при x = 2πk, где k ϵ Z
sin x = - 1, при x = 3π/2 + 2πk, где k ϵ Z cos x = - 1, при x = π + 2πk, где k ϵ Z
sin (-x) = - sin x, т. е. функция нечетная cos (-x) = cos x, т. е. функция четная
функция периодическая, наименьший период - 2π
sin x › 0, при x принадлежащем I и II четвертям или от 0° до 180° (2πk, π + 2πk) cos x › 0, при x принадлежащем I и IV четвертям или от 270° до 90° (- π/2 + 2πk, π/2 + 2πk)
sin x ‹ 0, при x принадлежащем III и IV четвертям или от 180° до 360° (π + 2πk, 2π + 2πk) cos x ‹ 0, при x принадлежащем II и III четвертям или от 90° до 270° (π/2 + 2πk, 3π/2 + 2πk)
возрастает на промежутке [- π/2 + 2πk, π/2 + 2πk] возрастает на промежутке [-π + 2πk, 2πk]
убывает на промежутках [ π/2 + 2πk, 3π/2 + 2πk] убывает на промежутках
производная (sin x)’ = cos x производная (cos x)’ = - sin x

Определить является ли функция четной или нет очень просто. Достаточно представить тригонометрический круг со знаками тригонометрических величин и мысленно «сложить» график относительно оси OX. Если знаки совпадают, функция четная, в противном случае — нечетная.

Введение радиан и перечисление основных свойств синусоиды и косинусоиды позволяют привести следующую закономерность:

Убедиться в верности формулы очень просто. Например, для x = π/2 синус равен 1, как и косинус x = 0. Проверку можно осуществить обративших к таблицам или проследив кривые функций для заданных значений.

Свойства тангенсоиды и котангенсоиды

Графики функций тангенса и котангенса значительно отличаются от синусоиды и косинусоиды. Величины tg и ctg являются обратными друг другу.

  1. Y = tg x.
  2. Тангенсоида стремится к значениям y при x = π/2 + πk, но никогда не достигает их.
  3. Наименьший положительный период тангенсоиды равен π.
  4. Tg (- x) = — tg x, т. е. функция нечетная.
  5. Tg x = 0, при x = πk.
  6. Функция является возрастающей.
  7. Tg x › 0, при x ϵ (πk, π/2 + πk).
  8. Tg x ‹ 0, при x ϵ (— π/2 + πk, πk).
  9. Производная (tg x)’ = 1/cos 2 ⁡x .

Рассмотрим графическое изображение котангенсоиды ниже по тексту.

Основные свойства котангенсоиды:

  1. Y = ctg x.
  2. В отличие от функций синуса и косинуса, в тангенсоиде Y может принимать значения множества всех действительных чисел.
  3. Котангенсоида стремится к значениям y при x = πk, но никогда не достигает их.
  4. Наименьший положительный период котангенсоиды равен π.
  5. Ctg (- x) = — ctg x, т. е. функция нечетная.
  6. Ctg x = 0, при x = π/2 + πk.
  7. Функция является убывающей.
  8. Ctg x › 0, при x ϵ (πk, π/2 + πk).
  9. Ctg x ‹ 0, при x ϵ (π/2 + πk, πk).
  10. Производная (ctg x)’ = — 1/sin 2 ⁡x Исправить

Угол: ° π rad =

Преобразовать в: радианы градусы 0 - 360° 0 - 2π положительное отрицательное Вычислять

Когда прямые пересекаются, то получается четыре разные области по отношению к точке пересечения.
Эти новые области называют углами .

На картинке видны 4 разных угла, образованных пересечением прямых AB и CD

Обычно углы измеряются в градусах, что обозначается как °. Когда объект совершает полный круг, то есть движется из точки D через B, C, A, а затем обратно к D, то говорят что он повернулся на 360 градусов (360°). Таким образом, градус - это $\frac{1}{360}$ круга.

Углы больше 360 градусов

Мы говорили о том, что когда объект делает полный круг вокруг точки, то он проходит 360°, однако, когда объект делает более одного круга, то он делает угол более 360 градусов. Это обычное явление в повседневной жизни. Колесо проходит многие круги, когда автомобиль движется, то есть оно образует угол больше 360°.

Для того, чтобы узнать количество циклов (пройденных кругов) при вращении объекта, мы считаем количество раз, которое нужно прибавить 360 к самому себе, чтобы получить число равное или меньшее, чем данный угол. Точно так же мы находим число, которое мы умножаем на 360, чтобы получить число меньшее, но наиболее близкое к данному углу.

Пример 2
1. Найти количество кругов, описанных объектом, образующем угол
a) 380°
b) 770°
c) 1000°
Решение
a) 380 = (1 × 360) + 20
Объект описал один круг и 20°
Так как $20^{\circ} = \frac{20}{360} = \frac{1}{18}$ круга
Объект описал $1\frac{1}{18}$ кругов.

B) 2 × 360 = 720
770 = (2 × 360) + 50
Объект описал два круга и 50°
$50^{\circ} = \frac{50}{360} = \frac{5}{36}$ круга
Объект описал $2\frac{5}{36}$ круга
c)2 × 360 = 720
1000 = (2 × 360) + 280
$280^{\circ} = \frac{260}{360} = \frac{7}{9}$ кругов
Объект описал $2\frac{7}{9}$ кругов

Когда объект вращается по часовой стрелки, то он образует отрицательный угол вращения, а когда вращается против часовой стрелке - положительный угол. До этого момента мы рассматривали только положительные углы.

В форме диаграммы отрицательный угол может быть изображен так, как это показано ниже.

Рисунок ниже показывает знак угла, который измеряется от общей прямой, 0 оси (оси абсцисс - х оси)

Это означает, что при наличии отрицательного угла, мы можем получить соответствующий ему положительный угол.
Например, нижняя часть вертикальной прямой это 270°. Когда измеряется в негативную сторону, то получим -90°. Мы просто вычитаем 270 из 360. Имея отрицательный угол, мы прибавляем 360, для того чтобы получить соотвествующий положительный угол.
Когда угол равен -360°, это означает, что объект совершил более одного круга по часовой стрелке.

Пример 3
1. Найти соответствующий положительный угол
a) -35°
b) -60°
c) -180°
d) - 670°

2. Найти соответствующий отрицательный угол 80°, 167°, 330°и 1300°.
Решение
1. Для того, чтобы найти соответствующий положительный угол мы прибавляем 360 к значению угла.
a) -35°= 360 + (-35) = 360 - 35 = 325°
b) -60°= 360 + (-60) = 360 - 60 = 300°
c) -180°= 360 + (-180) = 360 - 180 = 180°
d) -670°= 360 + (-670) = -310
Это означает один круг по часовой стрелке (360)
360 + (-310) = 50°
Угол равен 360 + 50 = 410°

2. Для того, чтобы получить соответсвующий отрицательный угол мы вычитаем 360 от значения угла.
80° = 80 - 360 = - 280°
167° = 167 - 360 = -193°
330° = 330 - 360 = -30°
1300° = 1300 - 360 = 940 (пройден один круг)
940 - 360 = 580 (пройден второй круг)
580 - 360 = 220 (пройден третий круг)
220 - 360 = -140°
Угол равен -360 - 360 - 360 - 140 = -1220°
Таким образом 1300° = -1220°

Радиан

Радиан - это угол из центра круга, в который заключена дуга, длина которой равна радиусу данного круга. Это единица измерения угловой величины. Такой угол примерно равен 57.3°.
В большинстве случаев, это обозначается как рад .
Таким образом $1 рад \approx 57.3^{\circ}$

Радиус = r = OA = OB = AB
Угол BOA равен одному радиану

Поскольку длина окружности задается как $2\pi r$, то в окружности $2\pi$ радиусов, а значит в целом круге $2\pi$ радиан.

Радианы обычно выражаются через $\pi$ во избежание десятичных частей в вычислениях. В большинстве книг, аббревиатура рад (rad) не встречается, но читатель должен знать, что, когда речь идет об угле, то он задан через $\pi$, а единицами измерения автоматически становятся радианы.

$360^{\circ} = 2\pi\ rad$
$180^{\circ} = \pi\ rad$,
$90^{\circ} = \frac{\pi}{2} rad$,
$30^{\circ} = \frac{30}{180}\pi = \frac{\pi}{6} rad$,
$45^{\circ} = \frac{45}{180}\pi = \frac{\pi}{4} rad$,
$60^{\circ} = \frac{60}{180}\pi = \frac{\pi}{3} rad$
$270^{\circ} = \frac{270}{180}\pi = \frac{27}{18}\pi = 1\frac{1}{2}\pi\ rad$

Пример 4
1. Преобразовать 240°, 45°, 270°, 750° и 390° в радианы через $\pi$.
Решение
Умножим углы на $\frac{\pi}{180}$.
$240^{\circ} = 240 \times \frac{\pi}{180} = \frac{4}{3}\pi=1\frac{1}{3}\pi$
$120^{\circ} = 120 \times \frac{\pi}{180} = \frac{2\pi}{3}$
$270^{\circ} = 270 \times \frac{1}{180}\pi = \frac{3}{2}\pi=1\frac{1}{2}\pi$
$750^{\circ} = 750 \times \frac{1}{180}\pi = \frac{25}{6}\pi=4\frac{1}{6}\pi$
$390^{\circ} = 390 \times \frac{1}{180}\pi = \frac{13}{6}\pi=2\frac{1}{6}\pi$

2. Преобразовать следующие углы в градусы.
a) $\frac{5}{4}\pi$
b) $3.12\pi$
c) 2.4 радиан
Решение
$180^{\circ} = \pi$
a) $\frac{5}{4} \pi = \frac{5}{4} \times 180 = 225^{\circ}$
b) $3.12\pi = 3.12 \times 180 = 561.6^{\circ}$
c) 1 рад = 57.3°
$2.4 = \frac{2.4 \times 57.3}{1} = 137.52$

Отрицаетльные углы и углы больше, чем $2\pi$ радиан

Для того чтобы преобразовать отрицательный угол в положительный, мы складываем его с $2\pi$.
Для того чтобы преобразовать положительный угол в отрицательный, мы вычитаем из него $2\pi$.

Пример 5
1. Преобразовать $-\frac{3}{4}\pi$ и $-\frac{5}{7}\pi$ в позитивные углы в радианах.

Решение
Прибавляем к углу $2\pi$
$-\frac{3}{4}\pi = -\frac{3}{4}\pi + 2\pi = \frac{5}{4}\pi = 1\frac{1}{4}\pi$

$-\frac{5}{7}\pi = -\frac{5}{7}\pi + 2\pi = \frac{9}{7}\pi = 1\frac{2}{7}\pi$

Когда объект вращается на угол больший, чем $2\pi$;, то он делает больше одного круга.
Для того, чтобы определить количество оборотов (кругов или циклов) в таком угле, мы находим такое число, умножая которое на $2\pi$, результат равен или меньше, но как можно ближе к данному числу.

Пример 6
1. Найти количество кругов пройденных объектом при данных углах
a) $-10\pi$
b) $9\pi$
c) $\frac{7}{2}\pi$

Решение
a) $-10\pi = 5(-2\pi)$;
$-2\pi$ подразумевает один цикл в направлении по часовой стрелке, то это означает, что
объект сделал 5 циклов по часовой стрелке.

b) $9\pi = 4(2\pi) + \pi$, $\pi =$ пол цикла
объект сделал четыре с половиной цикла против часовой стрелки

c) $\frac{7}{2}\pi=3.5\pi=2\pi+1.5\pi$, $1.5\pi$ равно три четверти цикла $(\frac{1.5\pi}{2\pi}=\frac{3}{4})$
объект прошел один и три четверти цикла против часовой стрелки

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.


В тригонометрии важным понятием является угол поворота . Ниже мы последовательно будем давать представление о повороте, и вводить все сопутствующие понятия. Начнем с общего представления о повороте, скажем о полном обороте. Далее перейдем к понятию угла поворота и рассмотрим его основные характеристики, такие как направление и величина поворота. Наконец, дадим определение поворота фигуры вокруг точки. Всю теорию по тексту будем снабжать поясняющими примерами и графическими иллюстрациями.

Навигация по странице.

Что называют поворотом точки вокруг точки?

Сразу отметим, что наряду с фразой «поворот вокруг точки» будем также использовать словосочетания «поворот около точки» и «поворот относительно точки», что обозначает одно и то же.

Введем понятие поворота точки вокруг точки .

Сначала дадим определение центра поворота.

Определение.

Точку, относительно которой осуществляется поворот, называют центром поворота .

Теперь скажем, что получается в результате поворота точки.

В результате поворота некоторой точки A относительно центра поворота O получается точка A 1 (которая в случае некоторого количества может совпадать с A ), причем точка A 1 лежит на окружности с центром в точке O радиуса OA . Иными словами, при повороте относительно точки O точка A переходит в точку A 1 , лежащую на окружности с центром в точке O радиуса OA .

Считают, что точка O при повороте вокруг самой себя переходит в саму себя. То есть, в результате поворота вокруг центра поворота O точка O переходит в саму себя.

Также стоит отметить, что поворот точки А вокруг точки O стоит рассматривать как перемещение в результате движения точки А по окружности с центром в точке O радиуса OA .

Для наглядности приведем иллюстрации поворота точки А вокруг точки O , на рисунках, расположенных ниже, перемещение точки А в точку А 1 покажем при помощи стрелки.

Полный оборот

Можно выполнить такой поворот точки A относительно центра поворота O , что точка А , пройдя все точки окружности, окажется на прежнем месте. При этом говорят, что точка А совершила вокруг точки O .

Дадим графическую иллюстрацию полного оборота.

Если же не останавливаться на одном обороте, а продолжать движение точки по окружности, то можно выполнить два, три и так далее полных оборотов. На чертеже ниже справа показано, как могут быть произведены два полных оборота, а слева - три оборота.


Понятие угла поворота

Из введенного в первом пункте понятия поворота точки понятно, что существует бесконечное множество вариантов поворота точки А вокруг точки O . Действительно, любую точку окружности с центром в точке O радиуса OA можно рассматривать как точку A 1 , полученную в результате поворота точки А . Поэтому, чтобы отличать один поворот от другого, вводится понятие угла поворота .

Одной из характеристик угла поворота является направление поворота . По направлению поворота судят о том, как осуществляется поворот точки – по часовой стрелке или против часовой стрелки.

Другой характеристикой угла поворота является его величина . Углы поворота измеряются в тех же единицах, что и : наиболее распространены градусы и радианы. Здесь стоит заметить, что угол поворота может выражаться в градусах любым действительным числом из промежутка от минус бесконечности до плюс бесконечности, в отличие от угла в геометрии, величина которого в градусах положительна и не превосходит 180 .

Для обозначения углов поворота обычно используются строчные буквы греческого алфавита: и т.д. Для обозначения большого количества углов поворота часто применяют одну букву с нижними индексами, к примеру, .

Теперь поговорим о характеристиках угла поворота подробнее и по порядку.

Направление поворота

Пусть на окружности с центром в точке O отмечены точки A и A 1 . В точку А 1 можно попасть из точки A , выполнив поворот вокруг центра O либо по часовой стрелке, либо - против часовой стрелки. Эти повороты логично считать различными.

Проиллюстрируем повороты в положительном и отрицательном направлении. На чертеже ниже слева показан поворот в положительном направлении, а справа – в отрицательном.

Величина угла поворота, угол произвольной величины

Угол поворота точки, отличной от центра поворота, полностью определяется указанием его величины, с другой стороны, по величине угла поворота можно судить о том, как этот поворот был осуществлен.

Как мы уже упоминали выше, величина угла поворота в градусах выражается числом от −∞ до +∞ . При этом знак плюс соответствует повороту по часовой стрелке, а знак минус – повороту против часовой стрелки.

Теперь осталось установить соответствие между величиной угла поворота и тем, какому повороту она соответствует.

Начнем с угла поворота, равного нулю градусам. Этому углу поворота отвечает перемещение точки А в себя. Другими словами, при повороте на 0 градусов вокруг точки O точка А остается на месте.

Переходим к повороту точки А вокруг точки O , при котором поворот происходит в пределах половины оборота. Будем считать, что точка А переходит в точку А 1 . В этом случае абсолютная величина угла AOA 1 в градусах не превосходит 180 . Если поворот происходил в положительном направлении, то величина угла поворота считается равной величине угла AOA 1 , а если поворот происходил в отрицательном направлении, то его величина считается равной величине угла АОА 1 со знаком минус. Для примера приведем рисунок, показывающий углы поворота в 30 , 180 и −150 градусов.


Углы поворота большие 180 градусов и меньшие −180 градусов определяются на основе следующего достаточно очевидного свойства последовательных поворотов : несколько последовательных поворотов точки A вокруг центра O равносильны одному повороту, величина которого равна сумме величин этих поворотов.

Приведем пример, иллюстрирующий данное свойство. Выполним поворот точки А относительно точки O на 45 градусов, а затем еще повернем эту точку на 60 градусов, после чего повернем эту точку на −35 градусов. Обозначим промежуточные точки при этих поворотах как A 1 , A 2 и A 3 . В эту же точку А 3 мы могли попасть, выполнив один поворот точки A на угол 45+60+(−35)=70 градусов.

Итак, углы поворота, большие 180 градусов, мы будем представлять как несколько последовательных поворотов на углы, сумма величин которых дает величину исходного угла поворота. Например, угол поворота 279 градусов соответствует последовательным поворотам на 180 и 99 градусов, или на 90 , 90 , 90 и 9 градусов, или на 180 , 180 и −81 градус, или на 279 последовательных поворотов по 1 градусу.

Аналогично определяются и углы поворота, меньшие −180 градусов. К примеру, угол поворота −520 градусов можно интерпретировать как последовательные повороты точки на −180 , −180 и −160 градусов.

Подведем итог . Мы определили угол поворота, величина которого в градусах выражается некоторым действительным числом из промежутка от −∞ до +∞ . В тригонометрии мы будем работать именно с углами поворота, хотя слово «поворот» часто опускают, и говорят просто «угол». Таким образом, в тригонометрии мы будем работать с углами произвольной величины, под которыми будем понимать углы поворота.

В заключение этого пункта отметим, что полный оборот в положительном направлении соответствует углу поворота в 360 градусов (или 2·π радианов), а в отрицательном – углу поворота в −360 градусов (или −2·π рад). При этом удобно большие углы поворота представлять как некоторое количество полных оборотов и еще один поворот на угол величиной от −180 до 180 градусов. Для примера возьмем угол поворота 1 340 градусов. Несложно 1 340 представить как 360·4+(−100) . То есть, исходному углу поворота отвечают 4 полных оборота в положительном направлении и последующий поворот на −100 градусов. Другой пример: угол поворота −745 градусов можно интерпретировать как два оборота против часовой стрелки и последующий поворот на −25 градусов, так как −745=(−360)·2+(−25) .

Поворот фигуры вокруг точки на угол

Понятие поворота точки легко расширяется на поворот любой фигуры вокруг точки на угол (речь идет о таком повороте, что и точка, относительно которой осуществляется поворот, и фигура, которую поворачивают, лежат в одной плоскости).

Под поворотом фигуры будем понимать поворот всех точек фигуры вокруг заданной точки на данный угол.

В качестве примера приведем иллюстрацию следующему действию: выполним поворот отрезка AB на угол относительно точки O , это отрезок при повороте перейдет в отрезок A 1 B 1 .

Список литературы.

  • Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- isbn 5-09-002727-7
  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Если вы уже знакомы с тригонометрическим кругом , и хотите лишь освежить в памяти отдельные элементы, или вы совсем нетерпеливы, – то вот он, :

Мы же здесь будем все подробно разбирать шаг за шагом.

Тригонометрический круг – не роскошь, а необходимость

Тригонометрия у многих ассоциируется с непроходимой чащей. Вдруг наваливается столько значений тригонометрических функций, столько формул… А оно ведь, как, – незаладилось вначале, и… пошло-поехало… сплошное непонимание…

Очень важно не махать рукой на значения тригонометрических функций , – мол, всегда можно посмотреть в шпору с таблицей значений.

Если вы постоянно смотрите в таблицу со значениями тригонометрических формул, давайте избавляться от этой привычки!

Нас выручит ! Вы несколько раз поработаете с ним, и далее он у вас сам будет всплывать в голове. Чем он лучше таблицы? Да в таблице-то вы найдете ограниченное число значений, а на круге – ВСЕ!

К примеру, скажите, глядя в стандартную таблицу значений тригонометрических формул , чему равен синус, скажем, 300 градусов, или -45.


Никак?.. можно, конечно, подключить формулы приведения … А глядя на тригонометрический круг, легко можно ответить на такие вопросы. И вы скоро будете знать как!

А при решении тригонометрических уравнений и неравенств без тригонометрического круга – вообще никуда.

Знакомство с тригонометрическим кругом

Давайте по порядку.

Сначала выпишем вот такой ряд чисел:

А теперь такой:

И, наконец, такой:

Конечно, понятно, что, на самом-то деле, на первом месте стоит , на втором месте стоит , а на последнем – . То есть нас будет больше интересовать цепочка .

Но как красиво она получилась! В случае чего – восстановим эту «лесенку-чудесенку».

И зачем оно нам?

Эта цепочка – и есть основные значения синуса и косинуса в первой четверти.

Начертим в прямоугольной системе координат круг единичного радиуса (то есть радиус-то по длине берем любой, а его длину объявляем единичной).

От луча «0-Старт» откладываем в направлении стрелки (см. рис.) углы .

Получаем соответствующие точки на круге. Так вот если спроецировать точки на каждую из осей, то мы выйдем как раз на значения из указанной выше цепочки.

Это почему же, спросите вы?

Не будем разбирать все. Рассмотрим принцип , который позволит справиться и с другими, аналогичными ситуациями.

Треугольник АОВ – прямоугольный, в нем . А мы знаем, что против угла в лежит катет вдвое меньший гипотенузы (гипотенуза у нас = радиусу круга, то есть 1).

Значит, АВ= (а следовательно, и ОМ=). А по теореме Пифагора

Надеюсь, уже что-то становится понятно?

Так вот точка В и будет соответствовать значению , а точка М – значению

Аналогично с остальными значениями первой четверти.

Как вы понимаете, привычная нам ось (ox) будет осью косинусов , а ось (oy) – осью синусов . позже.

Слева от нуля по оси косинусов (ниже нуля по оси синусов) будут, конечно, отрицательные значения.

Итак, вот он, ВСЕМОГУЩИЙ , без которого никуда в тригонометрии.

А вот как пользоваться тригонометрическим кругом, мы поговорим в .